Direct Model Checking of PLC Programs
in IL

Bastian Schlich * Jorg Brauer * Jorg Wernerus *
Stefan Kowalewski *

* Embedded Software Laboratory, RWTH Aachen University, 5207/
Aachen, Germany (e-mail: lastname @ embedded.rwth-aachen.de)

Abstract: While there are several approaches applying model checking to PLC programs, it
is still not used in industry. This is due to the limited applicability of the existing approaches,
which all translate PLC programs into the input languages of existing model checkers and thus
suffer from certain problems. This paper presents a new approach that applies model checking
directly to PLC programs written in IL without using translations. This has some advantages:
domain-specific information is available during verification, users can make propositions about
all features of the PLC, and counterexamples are given in the same language as the program,
thus, simplifying the process of locating errors. In the described approach, a tailored simulator
builds the state space for verification. Within this simulator, different abstraction techniques
are used to tackle the state-explosion problem. A case study shows the applicability of this

approach.

Keywords: Programmable Logic Controllers, Instruction List Programs, Formal Verification,

Model Checking.

1. INTRODUCTION

There are several approaches that apply model checking
(Clarke et al. (1999)) to Programmable Logic Controller
(PLC) programs. They all work in a similar manner by
translating PLC programs into the input language of an
existing model checker. Nevertheless, model checking is
still not used for the verification of PLC programs in
industry due to the limited applicability of the existing
approaches.

This paper presents a new approach, which applies model
checking directly to PLC programs written in Instruc-
tion List (IL) without using translations. This has some
advantages. The model checker can use domain-specific
information such as the cycle of the PLC during model
checking to reduce state spaces. Furthermore, users can
make propositions about all features of PLCs within the
formal specification. Another advantage is that counterex-
amples are shown directly in IL. Thus, users can more eas-
ily locate the source of an error, and the counterexample
gives precise information about how the property violation
emerged.

The fundamental concept in our approach is to build state
spaces for model checking using tailored simulators that di-
rectly work on IL programs. These simulators use domain-
specific information and apply different abstraction tech-
niques to tackle the state-explosion problem (Clarke et al.
(2001)). We have implemented this approach in our model
checker [MC]SQUARE. To make it applicable, [MC]SQUARE
supports the complete instruction set defined in the IEC
61131-3 standard (International Electrotechnical Commis-
sion (1993)) and automatically applies abstraction tech-
niques without any manual intervention. Moreover, users

do not have to prepare the IL programs to be checked.
Additionally, [MC]SQUARE features a GUI, which is similar
to the GUI of a debugger.

After a presentation of related work in Sect. 2, a general
introduction of our approach is given in Sect. 3. In this
approach, state spaces for model checking are built using
tailored simulators. Two of these simulators are presented
in Sect. 4. Sect. 5 shows the applicability of our approach
using four different case studies.

2. RELATED WORK

There are many approaches that deal with the applica-
tion of formal verification techniques to PLC programs.
Verification techniques used in these approaches include
static analysis, theorem proving, and model checking. As
this paper describes an approach that applies model check-
ing, this section presents related work regarding model
checking. All approaches known to us use a translation
approach, which translates the PLC program into the in-
put language of an existing model checker. The approaches
presented in this section all use SMV, CADENCE SMV,
or NUSMV for model checking.

Moon (1994) describes an approach to verify PLC pro-
grams given in the language Ladder Diagram (LD). In this
approach, the programs given in LD are translated into the
input language of SMV. In the translation, the rungs of
the alternative paths are translated into boolean assign-
ments. This approach supports only a limited amount of
constructs, namely switches and coils and their negated
versions. Another problem is that during the translation no
abstraction techniques are used, which leads to the state-
explosion problem.

Canet et al. (2000) present an approach that verifies PLC
programs given in the language IL. The IL programs
are translated into the input language of SMV. In this
translation process not all IL instructions are supported.
The PLC cycle is not explicitly modeled in this approach.
This led to a problem in the case study described by Canet
et al. (2000), who applied model checking to a program
controlling a turning center. In this case study, a formula
was refuted because an error was found in the middle of
the execution of the PLC cycle. This was a false alarm
because in the middle of the execution of the PCL cycle,
the behavior is not visible to the outside. To fix this
problem, Canet et al. (2000) had to include the program
counter in the specification, that is, they specified that the
specification has to be valid at certain program locations
only.

Mertke and Frey (2001) present an approach that combines
modeling and verification. In this approach IL programs
are translated into Petri nets. As in the other approaches,
not all features of IL programs are handled. This Petri net
together with two other Petri nets, which are manually
created and represent the PLC and its environment, are
translated into the input language of SMV. The specifi-
cation can be expressed using CTL or a language called
Sicherheitsfachsprache (Mertke (2004)).

Huuck (2003) describes an approach that translates PLC
programs written as a Sequential Function Chart (SFC)
into the input language of CADENCE SMV. The approach
does not handle all constructs found in SFCs because
some of these constructs have an ambiguous semantics.
Therefore, Bauer and Huuck (2002) defined a subset of
SFCs as safe SFCs, which have a well-defined semantics.
This set of constructs is supported by this approach.

Pavlovic et al. (2007) developed an approach that trans-
lates PLC programs given in the language Statement List
(SL), which is a PLC language developed by Siemens, into
the input language of NUSMV. SL is similar to IL, but
the syntax is a little different and it has some additional
instructions to access certain features of the Siemens PLCs
directly. The hardware model that is used in this approach
is that of a Siemens S7. Without manual adaptation of the
generated NUSMYV model, verifying specifications is often
too time-consuming (cp. Sect. 5.1).

3. APPROACH

[MC]SQUARE (Schlich (2008)) is a model checker, which
was developed to model check microcontroller assembly
code. It is written in Java and features a graphical user
interface. [MC|SQUARE supports the ATMEL ATmegal6,
the ATMEL ATmegal28, the Intel MCS-51, and the In-
fineon XC167 microcontrollers. Several abstraction tech-
niques are available in [MC]SQUARE such as path reduction
and dead variable reduction (Schlich et al. (2008b)) and
delayed nondeterminism Noll and Schlich (2008).

This paper describes the extension of [MC]SQUARE to
model check IL programs for PLCs. To be able to apply
[MC]SQUARE to real-world applications, it supports the
complete set of instructions of the IEC 61131-3 stan-
dard including all functions and function blocks from the
standard library in the programming system CODESYS.

[mc]square

IL program
program | parser

N
CTL CTL parser
formula >

Fig. 1. Model checking process applied in [MC]SQUARE

model checker

state space

-

static : counter-
simulator

analyzer [| example

generator

concrete

abstract

Additionally, self-defined functions and function blocks are
supported.

The model checking process that is applied within [Mmc]-
SQUARE is shown in Fig. 1. Our tool requires as input an IL
program and a formula given in Computation Tree Logic
(CTL) (Ben-Ari et al. (1983)). [MC]SQUARE reads IL pro-
grams written for CODESYS, with one source file for each
function. It is sufficient to indicate the main program and
[MC]SQUARE automatically loads all dependent functions
and function blocks.

The program parser and the CTL parser transform the
program and the formula into their internal representa-
tions. Next, static analyses are conducted, which deliver
information for the simulator by examining the program
code. In order to verify a given specification, the model
checker evaluates the state space of the analyzed program,
which is built using a tailored simulator (see Sect. 4). New
states are directly stored in the state space and accessed
by the model checker.

In [MC|SQUARE, we have implemented the local model
checking algorithm of Heljanko (1997), which is based
on the approach of Vergauwen and Lewi (1993). Local
algorithms determine the truth values of the formula for
the initial state only, and thus, can be applied on-the-fly.
In contrast, global algorithms determine the truth values
of the formula for all states.

For verification of PLC programs, the user chooses either
the concrete or the abstract simulator for state space build-
ing. Independently of the simulator used, [MC|SQUARE
generates a counterexample if the specification is violated.
Multiple ways exist to visualize counterexamples in [MC]-
SQUARE, supporting the developer in understanding the
defect found.

Additionally, [MC]SQUARE has a feature to simulate pro-
gram execution. The simulation process can be controlled
by the user. Input assignments can be determined before
execution of the next step, which helps the user in repro-
ducing incorrect program behavior. Moreover, it is possible
to simulate multiple steps both forward and backward,
which distinguishes [MC]SQUARE from conventional debug-
gers and renders it a helpful tool for debugging, as well.

4. DESCRIPTION OF THE SIMULATORS

Model checking is not performed on the system itself but
on the state space of the system. In [MC|SQUARE, the
state space is built by a tailored simulator. Developing

Configuration

Resource

Task (cyclic)

v

Program

A

FCT FB

— Input/output —

Fig. 2. Model of a conventional PLC (Lewis (1998))

simulators is the most important part in our research. The
simulators execute the IL program based on the underlying
hardware model of a conventional PLC.

The model of a conventional PLC (Lewis (1998)), on
which most existing PLCs are based, is displayed in
Fig. 2. The conventional PLC consists of one resource,
one cyclic task, and one program. The cyclic task executes
in cyclic operation mode, which comprises the following
steps: reading input, executing the program, and writing
output. The program is allowed to use functions, function
blocks, inputs, and outputs. Output values are written
only at the end of a cycle.

For the verification of IL programs, we have developed
two simulators: a concrete and an abstract one. While
the concrete simulator operates on single values, we have
developed an abstract simulator, which performs compu-
tations on intervals to tackle the state-explosion prob-
lem. Both simulators model the cyclic operation mode of
the conventional PLC. [MC]SQUARE stores newly created
states only after the outputs are written. This approach
reduces state spaces by storing states only after a complete
cycle was executed. All memory configurations that are not
visible are omitted. Moreover, [MC]SQUARE only verifies
the written output values.

The following operations are performed by the simulator
in order to create the successors of a state:

(1) Determine all possible input assignments.

(2) For each input assignment, simulate a complete cycle
of the PLC program and evaluate the truth values of
the atomic propositions.

(3) Store the resulting states in the state space.

[MC]SQUARE abstracts from environment behavior. In or-
der to create an over-approximation of all possible behav-
iors of the PLC program, the simulator has to execute the
program with all possible input assignments. The concrete
and the abstract simulator differ in how these input assign-
ments are dealt with. The concrete simulator is executed
once for each possible combination of input variables. In
contrast, the abstract simulator operates on intervals of
values that lead to the same control flow. Hence, a state in
the abstract simulator represents a set of concrete states.

Fig. 3. Input assignments for two variables of type BYTE

After program simulation, the atomics of the formula are
checked for the new state. Users are allowed to make
assumptions about inputs, outputs, and internal variables
in a formula.

Since instructions in CODESYS do not have a formal
semantics, we have validated their behavior by testing.
To handle self-defined functions and function blocks, we
have added auxiliary instructions FCTCALL, FCTEND and
FBEND to mark function calls and the beginning and end
of a function or function block. The main purpose of these
special-purpose instructions is to initialize and to reset the
accumulator before and after the simulation of a function
or function block.

For the implementation, we have used the visitor design
pattern to ensure that all simulators implement the com-
plete instruction set of the IEC 61131-3 standard.

4.1 The Concrete Simulator

The concrete simulator executes the program for each pos-
sible combination of concrete input values. Before program
execution, all input assignments are determined and stored
explicitly. Given a program with two input variables of
type BYTE, for instance, this leads to 2'¢ possible combina-
tions of input values. After an input assignment is written
into the memory, the simulator executes the program.

If a program uses input data types with wide value-ranges,
the creation of all assignments can be too time- and
memory-consuming for practical applications. Therefore,
the concrete simulator sometimes suffers from the state-
explosion problem. For example, for a single input of type
DWORD, the concrete simulator has to create 232 successors.
Moreover, the number of states grows exponentially with
the number of input variables. The situation for two input
variables of type BYTE, for which 26 possible combinations
exist, is depicted in Fig. 3.

4.2 The Abstract Simulator

We analyzed which abstraction techniques that exist in
[MC]SQUARE are applicable to PLCs. Techniques such as
delayed nondeterminism generate successors not until the
program accesses input values, for instance, in an arith-
metic computation. Until the concrete values are required,
the simulator executes the program with nondeterministic
values, and hence, reduces the number of states by post-
poning the instantiation of values. Due to our modeling
of the PLC cycle such techniques have no effect on the
number of states because the states are only stored at the
end of the cycle when the program execution is finished.
This led to the development of the abstract simulator.

PROGRAM PLC_PRG Slice INPUT1

VAR LD INPUT1
INPUT1 AT %IX0:BYTE; GT 50
INPUT2 AT %IX1:BYTE; JMPC labell

END_VAR
LD INPUT1 Slice INPUT2
GT 50 LD INPUT2
JMPC labell EQ 100
LD INPUT2 JMPC label2
EQ 100
JMPC label2

Fig. 4. Example program and its slices

The abstract simulator works on intervals of values instead
of single values. It combines all input assignments that
lead to the same program control flow to an interval and
executes the program on these intervals. The abstract
simulator needs a static analysis that is executed before
state space building to determine which input values lead
to the same control flow and thus can be combined into
intervals.

During static analysis, [MC]SQUARE first constructs the
control flow graph (CFG) of the program. A CFG is a
directed graph in which each instruction is represented
by one node. The CFG contains an edge (i1,42) if and
only if the execution of instruction ¢; may be followed
by the execution of i;. That means, the CFG contains
all possible execution paths through the program. Only
branching instructions have more than one successor in
IL.

Then, [MC|SQUARE applies program slicing (Weiser (1981))
for each input variable to determine all instructions where
this input variable influences the control flow. Slicing deliv-
ers a subset of the program consisting only of instructions
whose execution depends on the input variable. An input
variable can influence the control flow by a comparison or
a type conversion before a conditional jump is executed,
which requires an accumulator of type BOOL. The static
analysis backtracks which values lead to a jump and which
do not. These values are combined to intervals.

During state space building, the determinizer of the ab-
stract simulator creates all combinations of assignments of
the intervals determined during the static analysis instead
of all combinations of assignments of concrete values as
done by the concrete simulator. For each assignment, the
program is executed and the formula atomics are checked
on intervals. Similar to the concrete case, the successors
are stored in the state space after the program has been
executed for each assignment.

For the program shown in Fig. 4, the static analyzer
divides the values for INPUT1 into two intervals [0, 50] and
[51,255]. If the value of INPUT1 is in [0,50], the jump is
not performed; otherwise the program jumps to labell.
For INPUT2 the same principle leads to the intervals [0, 99]
and [101,255], for which the jump is not executed, and
[100, 100], for which the jump to label?2 is performed.

All possible combinations of the intervals of the different
input variables are then generated as shown in Fig. 5.
These intervals serve as input for the abstract simulator.

[0,50] [0,50] [0,50] [51,255]
[0,99] [100,101] [101,255] [0,99]

[51,255]

[100,101]

Fig. 5. Interval assignments for the example shown in
Fig. 4

Overall, only 6 successors are created instead of 216 for the
concrete case.

5. CASE STUDIES

These case studies show the application of [MC]SQUARE
to a number of different model checking problems. To
evaluate the performance of [MC]SQUARE, we translated
programs used to evaluate related approaches into IL. and
verified the same properties.

5.1 The Program DemonstrateFormByte

Pavlovic et al. (2007) demonstrated their method using the
program DemonstrateFormByte, which converts a value
given as eight input bits into a single byte. The transfor-
mation into a byte is conducted by the function FormByte.
The following CTL specification was verified:

AG(Byte=(b0+2~b1+4~b2+8~b3+
16b4+32b5+64b6+128b7))

[MC]SQUARE required 6.3 seconds to verify this formula
without any manual adaptations. It created 65,537 states,
but stored only 256. All in all, 794 kB of memory were
required for the state space.

In contrast, the approach of Pavlovic et al. (2007) required
approximately eight hours to verify the program without
manual adaptations. The verification time could be re-
duced to 113 seconds by manually narrowing the variable
range and by preventing NUSMV from instantiating func-
tion variables outside of functions. [MC|SQUARE is capable
of model checking this program efficiently without the need
for manual preparations.

5.2 A Chemical Batch Plant

Huuck (2003) demonstrated his approach on a chemical
batch plant shown in Fig. 6. The plant consists of two
tanks A and B for raw material and a reactor C with a
stirrer. Boolean inputs report to the controller when a tank
is empty or full. Five valves control loading and draining
of the tanks.

The plant operates as follows. First, both tanks are filled
with raw material. Then V3 opens and the content of A
flows completely into the reactor. As soon as A is empty,
V4 opens, the content flows into the reactor, and the stirrer
begins to work. After B is completely drained, the stirrer
stops, the reactor is drained, and the process restarts.

Fig. 6. Model of a chemical batch plant (Huuck (2003))

Table 1. Model checking results for the chemi-
cal batch plant

CTL formula States States Mem. | Time
stored | created | [MB] [s]
AG—(V1AV3) 161 5,153 0.302 0.14
EFSTEP =1 1 1 0.179 0.03
EF STEP =2 33 673 0.234 0.2
EF STEP =3 65 961 0.275 0.2
EF STEP =4 113 1,057 0.244 0.3
AG(AFSTEP =1) 65 737 0.252 0.2
AG(AF STEP =2) 33 65 0.197 0.02
AG(AF STEP =3) 33 65 0.930 0.01
AG(AF STEP = 4) 33 65 0.488 0.02

The results of the verification of the different formulas
using [MC]SQUARE on an Intel Centrino 1.3 GHz and
512 MB RAM are shown in Tab. 1. Huuck verified all
properties in a fraction of a second on a Sun ULTRA with
167 MHz.

In contrast to Huuck’s approach, where the environment
was modelled manually, [MC]SQUARE abstracts from en-
vironment behavior as described in Sect. 4. [MC|SQUARE
generates a spurious counterexample for the last four for-
mulas and detects that even though V1 and V2 are opened,
no material flows into the tanks. Hence, they will never be
filled completely. These spurious warnings, however, can
be eliminated by integrating the work of Schlich et al.
(2008a) into the PLC model checking in [MC]SQUARE.
When we consider the difference between the used com-
puter systems we conclude that the performance results of
Huuck’s approach and of [MC]SQUARE are comparable.

5.8 A Modified Chemical Batch Plant

We extended the previous program to deal with precise
filling levels. The boolean inputs were replaced by inputs
of type BYTE. These input variables indicate the current
contents of the tanks in liters. We assume that tanks
A and B both have a capacity of 50 liters. The plant
operates the same way as before. The abstract simulator
verifies the property expressed by the formula AG(—=(V1A
V3), which checks if there exists no state such that V1
and V3 are opened and raw material can flow from the
source through A into the reactor, within 0.11 seconds.
Verifying the formula required 280 kB of memory. Neither
our concrete simulator nor related approaches could verify

Table 2. Results of model checking the Miller-
Rabin prime test

Prime Instructions | States | Mem. Time
candidate per cycle stored | [MB] [s]
1,481 ~ 2,362 33,287 29.178 91.52
8,353 ~ 3,320 33,228 | 29.192 126.48
10,111 ~ 60,744 33,229 | 29.168 | 1873.34
14,779 ~ 88,752 33,330 | 29.174 | 2328.13

this formula. Hence, our approach is capable of model
checking programs that could not be handled before.

5.4 The Miller-Rabin prime test

As a last program, we have implemented the Miller-Rabin
prime test in IL. The program uses variables of types REAL,
DINT, and STRING as well as instructions such as type
conversions, which are not supported by other approaches
(cp. Sect.2).

The prime test is a probabilistic test that is based on
the Fermat criterion a® 'mod n # 1. It checks if an
odd number n is prime. If and only if for every number
a € {2,...,n — 1} the criterion holds then n is prime.
Instead of checking each number from 2 to n —1 we choose
a randomly and apply the test. If the test fails on a single
random number, we can be sure that n is not prime.
Otherwise, after ¢ iterations we can say that n is prime
with a probability of (3) - 100%.

First, the IL program generates a random number a €
{2,...,n — 1} using the linear congruence theorem. If the
generated number is not within the bounds, the program
starts a new calculation. Next, the prime test is conducted
and a string variable indicates whether the test was
successful or not.

For this program, we checked whether the formula
AG(a > 1 Aa < n) is satisfied. The results are shown
in Tab. 2. We used four numbers in this prime test: 1,481,
8,353, 10,111, and 14,779. Furthermore, we measured how
many instructions were executed per cycle. In this pro-
gram, each cycle corresponds to a stored state. We also
measured memory and time needed for model checking.
The instructions per cycle differ between cycles because
random numbers that are not within the range are dis-
carded. As in all four runs the same method for generating
random numbers was used, all stabilize after nearly the
same number of cycles . The small difference between the
four runs are again caused by discarding random numbers
that are not within the range.

This case study shows that the verification time scales
roughly linear with the number of executed instructions
(instructions per cycle * cycles). There is, however, still
place for improvement in model checking PLC programs
using [MC|SQUARE. The program part containing the ac-
tual prime test is not relevant for the formula, but the
analysis is computationally expensive. This shows that
a more sophisticated program slicing method could be
used to separate the relevant part of the program for
the formula from the rest and only simulate the relevant
part. Moers (2008) has implemented program slicing for
microcontrollers to simulate only the relevant program
parts. This methods could also be applied to PLCs.

6. CONCLUSION & FUTURE WORK

This paper describes an approach to verify PLC programs
given in IL directly using model checking. In contrast to
previous work on the verification of PLC programs, the
complete instruction set of the TEC 61131-3 standard is
supported. The state space is built using tailored simula-
tors, which directly work on IL programs and automat-
ically apply abstraction techniques to tackle the state-
explosion problem. This has several advantages: the tai-
lored simulators can apply abstractions that use domain-
specific information, users can make propositions about
all features of the PLCs, and the counterexample is shown
in the IL program, which helps users to understand the
counterexample and to locate the source of the indicated
erTor.

The case studies described in Sect. 5 show the applicability
of this approach. Still, the state explosion is a problem
when model checking PLC programs. The case studies
could show that our approach scales at least as good
as the approaches described in Sect. 2, but in most
cases, our approach scales better. The time needed for
model checking was in most cases satisfying, and memory
requirements were not a problem.

An important goal for the future is the development of fur-
ther domain-specific abstraction techniques. In our work,
we found out that domain-specific abstraction techniques
are not always transferable to other hardware platforms.
For example, the delayed nondeterminism, which is the
most important abstraction technique used when model
checking microcontroller assembly code, could not directly
be transfered to model checking IL programs. It had to
be changed and led to the development of the abstract
simulator.

REFERENCES

Bauer, N. and Huuck, R. (2002). A parameterized seman-
tics for sequential function charts. In Semantic Foun-
dations Engineering Design Languages (SFEDL 2002),
Grenoble, France, 69-83.

Ben-Ari, M., Manna, Z., and Pnueli, A. (1983). The
temporal logic of branching time. Acta Informatica,
20(3), 207-226.

Canet, G., Couffin, S., Lesage, J.J., Petit, A., and Schnoe-
belen, P. (2000). Towards the automatic verification
of plc programs written in instruction list. In 2000
IEEFE International Conference on Systems, Man, and
Cybernetics, Nashville, TN, USA, volume 4, 2449-2454.
IEEE Computer Society Press.

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., and Veith,
H. (2001). Progress on the state explosion problem in
model checking. In Informatics - 10 Years Back. 10
Years Ahead, volume 2000 of Lecture Notes in Computer
Science, 176-194. Springer.

Clarke, E.M., Grumberg, O., and Peled, D.A. (1999).
Model Checking. The MIT Press.

Heljanko, K. (1997). Model checking the branching time
temporal logic CTL. Research Report A45, Helsinki
University of Technology, Digital Systems Laboratory,
Espoo, Finland.

Huuck, R. (2003). Software Verification for Programmable
Logic Controllers. Dissertation, University of Kiel, Kiel,
Germany.

International Electrotechnical Commission (1993). IEC
61131-8 Ed. 1.0: Programmable controllers — Part 3:
Programming languages. International Electrotechnical
Commission, Geneva, Switzerland.

Lewis, R.W. (1998). Programming industrial control sys-
tems using IEC 1131-3 (Revised Edition). Institution of
Electrical Engineers, Stevenage, UK.

Mertke, T. (2004). Formale Spezifikation reaktiver Systeme
mit einer Sicherheitsfachsprache. Dissertation, Bran-
denburgisch Technische Universitéit Cottbus.

Mertke, T. and Frey, G. (2001). Formal verification of plec-
programs generated from signal interpreted petri nets.
In 2001 IEEE International Conference on Systems,
Man, and Cybernetics, Tuscon, AZ, USA, volume 4,
2700-2705. IEEE Computer Society Press.

Moers, M. (2008). Model Checking von Sensornetzwerk-
Knoten mit Hilfe von [mc/square. Diploma thesis,
RWTH Aachen University, Aachen, Germany.

Moon, I. (1994). Modeling programmable logic controllers
for logic verification. IEEE Control Systems Magazine,
14(2), 53-59.

Noll, T. and Schlich, B. (2008). Delayed nondeterminism
in model checking embedded systems assembly code. In
Hardware and Software: Verification and Testing (HVC
2007), Haifa, Israel, volume 4899 of Lecture Notes in
Computer Science, 185-201. Springer.

Pavlovic, O., Pinger, R., and Kollmann, M. (2007). Auto-
mated formal verification of plc programms written in
IL. In 4th International Verification Workshop (VER-
IFY’07), Bremen, Germany, number 259 in CEUR
Workshop Proceedings, 152-163. CEUR-WS.org.

Schlich, B. (2008). Model Checking of Software
for Microcontrollers. Dissertation, RWTH
Aachen University, Aachen, Germany. URL

http://aib.informatik.rwth-aachen.de/2008/
2008-14 .pdf.

Schlich, B., Giickel, D., and Kowalewski, S. (2008a). Mod-
eling the environment of microcontrollers to tackle the
state-explosion problem in model checking. In G. Tarnai
and E. Schnieder (eds.), Formal Methods for Automa-
tion and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2008), Budapest, Hungary, 27-34.
L’Harmattan.

Schlich, B., Loll, J., and Kowalewski, S. (2008b). Ap-
plication of static analyses for state space reduction
to microcontroller assembly code. In Formal Methods
for Industrial Critical Systems (FMICS 2007), Berlin,
Germany, volume 4916 of Lecture Notes in Computer
Science, 21-37. Springer.

Vergauwen, B. and Lewi, J. (1993). A linear local
model checking algorithm for CTL. In CONCUR’93,
Hildesheim, Germany, volume 715 of Lecture Notes in
Computer Science, 447-461. Springer.

Weiser, M. (1981). Program slicing. In Proceedings of
the 5th international conference on Software engineering
(ICSE 81), San Diego, USA, 439-449. IEEE Press.

