
Reduction of Interrupt Handler Executions for
Model Checking Embedded Software

Bastian Schlich1, Thomas Noll2, Jörg Brauer1, and Lucas Brutschy1

1 Embedded Software Laboratory, RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

2 Software Modeling and Verification Group, RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

Abstract. Interrupts play an important role in embedded software.
Unfortunately, they aggravate the state-explosion problem that model
checking is suffering from. Therefore, we propose a new abstraction tech-
nique based on partial order reduction that minimizes the number of
locations where interrupt handlers need to be executed during model
checking. This significantly reduces state spaces while the validity of the
verification results is preserved. The paper details the underlying static
analysis which is employed to annotate the programs before verification.
Moreover, it introduces a formal model which is used to prove that the
presented abstraction technique preserves the validity of the branching-
time logic CTL*-X by establishing a stutter bisimulation equivalence
between the abstract and the concrete transition system. Finally, the
effectiveness of this abstraction is demonstrated in a case study.

1 Introduction

Embedded systems frequently occur as part of safety-critical systems. Full test-
ing of these systems is often not possible due to fast time to market, uncertain
environments, and the complexity of the systems. Model checking has been rec-
ognized as a promising tool for the analysis of such systems. A major problem for
the application of model checking is the state explosion. When model checking
embedded-systems software, interrupts are a major challenge. They are impor-
tant as many features of embedded systems are implemented using interrupts,
but they have a considerable impact on the size of the state space. Whenever
they are enabled, they can interact with the main program and influence the
behavior of the overall system.

To make model checking applicable to embedded systems software, we de-
veloped a model checker for microcontroller assembly code called [mc]square
[1]. This model checker works directly on the assembly code of the program and
automatically applies abstraction techniques such as delayed nondeterminism [2]
and delayed nondeterminism for interrupts [3] to tackle the state-explosion prob-
lem. This paper describes a new abstraction technique called interrupt handler
execution reduction (IHER), which is based on the idea of partial order reduction



(POR). It reduces the number of program locations at which the possible exe-
cution of interrupt handlers (IHs) has to be considered. This can greatly reduce
state spaces built during model checking.

The idea behind IHER is similar to the one behind POR (cf. Sect. 6), but
the algorithms used are different due to the fact that the pseudo parallelism
introduced by IHs significantly differs from concurrent threads in its asymmetry.
Threads can block other threads and control can nondeterministically change
between threads. IHs, however, can only interrupt the main program, but they
cannot be interrupted by the main program. The instructions of the main pro-
gram have to be executed whereas the execution of IHs is usually nondeter-
ministic. Moreover in [mc]square, IHs are required to be executed atomically
because if IHs can mutually be interrupted, a stack collision will eventually occur
as the stack that stores the return addresses is bounded on real microcontrollers.
Hence, we model IHs as atomic actions in IHER. Consequently, as IHs do not
necessarily terminate due to loops or usage of microcontroller features, we can-
not guarantee termination of atomic actions. In contrast, in POR it is assumed
that atomic actions always terminate.

The contribution of this paper is twofold. We have developed a static analysis
framework for microcontroller assembly code that forms the basis for IHER.
Furthermore, we have developed a dynamic part that applies IHER during model
checking. The static analysis identifies program locations at which the execution
of IHs can be prevented because they do not influence the (visible) behavior
of the system or software, respectively. During model checking, the execution
of IHs is blocked at these locations. As we will see, this abstraction technique
guarantees a stuttering bisimulation equivalence between the concrete and the
abstract transition system. Therefore, it preserves the validity of CTL*-X [4]
formulas.

The paper is structured as follows. First, [mc]square is introduced in Sect. 2.
Then, Sect. 3 explains the general idea of our abstraction technique and details
the applied algorithms. Section 4 presents a formal model and gives a sketch of
the proof that the abstraction technique presented in this paper actually pre-
serves a stuttering bisimulation equivalence. The effectiveness of the technique is
demonstrated in the case study described in Sect. 5. Related work, particularly
with respect to POR, is presented in Sect. 6.

2 [mc]square

[mc]square [1] is a model checker for microcontroller assembly code. It can
verify code for five different microcontrollers, namely ATMEL ATmega16 and
ATmega128, Infineon XC167, Intel MCS-51, and Renesas R8C/23. It accepts
programs given in different binary-code file formats such as ELF or Intel Hex
Format and, additionally, it reads the corresponding C code if it is available.
[mc]square processes specifications given in CTL [4], which can include propo-
sitions about general purpose registers, I/O registers, general memory locations,
and the program counter. (Depending on the applied abstraction techniques,

2



propositions about the program counter may be disallowed.) If debug informa-
tion is available, specifications can also include propositions about C variables.

[mc]square uses explicit model checking algorithms, but the states are
partly symbolic. That is, they do not represent single concrete states but sets of
concrete states, and are introduced by abstractions of the microcontroller mem-
ory. In [mc]square, we have modeled different abstractions of the memory that
vary with respect to the degree of abstraction. Beside these memory-oriented
methods, we have also implemented several general purpose abstraction tech-
niques such as dead variable reduction and path reduction [5]. It is important to
notice that [mc]square always creates an over-approximation of the behavior
shown by the real microcontroller. Depending on the applied abstraction tech-
niques, [mc]square preserves the validity of CTL, the universal fragment of
CTL (ACTL) [4], or ACTL-X, which refers to ACTL without the next operator.

Figure 1 shows the model checking process that is applied by [mc]square.
First, the binary code, the C code (if available), and the formula are parsed
and transformed into their internal representations. Then, the static analyzer
is executed and the program is annotated using information from the assembly
code, the debug information, and the CTL formula. These annotations are later
used by the simulator to reduce the state space.

The static analyzer performs several analyses as described by Schlich [1].
A major challenge for the analysis of assembly code are indirect references to
the memory. As most of these are caused by stack-handling operations, a stack
analysis is employed to determine the values of the stack pointer in order to
restrict the memory regions that can be accessed [6]. Other indirect references
are rarely used. To generate an over-approximation, we assume in these cases
that indirect references can access the complete memory of the microcontroller.

[mc]squareProgram 
file

C file

CTL 
formula

Program 
parser

CTL 
parser

Static 
analyzer

Counter-
example 
generator

Model checker

Simulator

State 
space

Fig. 1. Model checking process applied in [mc]square

In the next step, [mc]square performs model checking. Currently, we have
implemented two different algorithms: one for checking invariants, and one on-
the-fly CTL model checking algorithm described by Heljanko [7]. The model
checker requests states from the state space. If successors of a state are not yet
created, the state space uses the simulator to generate them on-the-fly.

3



The simulator natively handles nondeterminism and creates an over-approxi-
mation of the behavior shown by the real microcontroller. Within the simulator
component, we have modeled the different microcontrollers. Creation of succes-
sors is done by means of interpretation. A state is loaded into the model of the
microcontroller, and then all its possible successors are generated. A state can
have more than one successor because interrupts can occur while executing the
program and because input can be read from the environment or from devices
with nondeterministic behavior such as timers.

If the model checker refutes the property under consideration, the coun-
terexample generator creates a counterexample, which is also optimized. That
is, loops and other unneeded parts are removed to ease its comprehension. The
counterexample is presented in the assembly code, in the C code (if available),
in the control flow graph of the assembly code, and as a state space graph.

3 Reduction of Interrupt Handler Executions

The execution of IHs has a significant impact on state space sizes when model
checking microcontroller programs. Interrupts introduce pseudo parallelism in
microcontroller programs as they can possibly occur at every program location
where they are enabled (cf. Sect. 1). Thus, state spaces can grow exponentially
with the number of interrupts used. Similarly to the observation that led to the
partial order reduction technique (cf. Sect. 6), we observed that the execution
of IHs does not always influence the behavior of a program. In the following, an
abstraction technique is described that reduces the number of locations where
IHs have to be considered. First, the general idea is presented, then, details of
the applied analysis are given, and in the end, the application of this technique
is demonstrated using an example.

3.1 General Idea

We have developed an abstraction technique called interrupt handler execution
reduction, which reduces the number of IH executions by blocking IHs at program
locations where there is no dependency between certain IHs and the program.
There is a dependency if either one influences the other or the visible behavior of
the program is changed. An IH influences a program location if it, for example,
writes a memory location that is accessed by the program location. Here, an
access refers to both a reading or writing reference to a memory location. On
the other hand, a program location influences an IH if it, for instance, enables or
disables interrupts. The visible behavior of the program is changed by a visible
action if a memory location is written that is used in an atomic proposition
(AP). The same applies for dependencies between IHs.

When using this abstraction technique, propositions about the program coun-
ter are not allowed because the program counter is changed at all program
locations, and therefore, IHs could never be suppressed. In the analysis, the ex-
ecution of IHs is assumed to be atomic, and therefore, IHs are treated as single

4



instructions. Our idea, however, can easily be extended to the case that IHs are
interruptible by treating each IH the same way as the main process is treated.
As IHs can possibly contain divergent loops, termination of IHs cannot be guar-
anteed. To preserve the validity of specifications with respect to our abstraction
technique, divergent behavior has to be observable both in the concrete and
the abstract model (see Sect. 4). Hence, IHs have to be executed at least once
between two visible actions.

We additionally require that an interrupt can occur arbitrarily often at a
single program location because at this location it has to mimic all possible be-
haviors to create an over-approximation of the real behavior. On the real hard-
ware, for some microcontrollers such as the ATMEL ATmega16, the execution
of an IH is always followed by the execution of an instruction of the program.
Allowing an arbitrary number of occurrences adds additional behavior and thus
leads to an over-approximation, but it again reduces state spaces.

The IHER technique comprises two parts: a static analysis that annotates the
program, and a dynamic part that uses the annotations during model checking
to suppress the execution of IHs where they do not need to be considered. The
next section details the static analysis and the last section provides an example.

3.2 Static Analysis

As a prerequisite for determining program locations where IHs can be blocked,
[mc]square employs a sequence of different context-sensitive static analyses and
combines their results as detailed by Schlich [1]. First, the control flow graph
(CFG) of the program is built and all program locations are annotated with
the sets of live variables, reaching definitions, and the status of interrupt regis-
ters, that is, the information whether certain interrupts are enabled or disabled.
During these analyses, information about the stack is used to limit the over-
approximation. As their results potentially influence each other, these analyses
are conducted within a loop until a fixed point is reached. Using the information
that was obtained in this way, the analysis for the IHER abstraction technique
is applied. It consists of the following four steps:

1. Detect dependencies between IHs
2. Detect dependencies between program locations and IHs
3. Refine results
4. Label blocking locations

In the following, these four steps are detailed.

Detect Dependencies between IHs. In the first step of the analysis, depen-
dencies between IHs are identified. This is formalized by the relation ./ ⊆ IH× IH
where i, j ∈ IH depend on each other, denoted i ./ j, if one of the following con-
ditions holds:

– one enables or disables the other,

5



– one writes a memory location accessed by the other, or
– one writes a memory location used in an AP.

This relation is obviously symmetric. If one IH enables or disables another
IH, all possible interleavings between both are relevant. Therefore, not only the
enabled/disabled IH has to be executed if the enabling/disabling IH is executed
but also vice versa as otherwise behavior could get lost. This also applies if one
IH writes a memory location that is accessed by another IH. Note that in the
last condition only one IH is mentioned. Thus, if there is one IH that writes a
memory location that is used in an AP, all IHs depend on each other. An IH
that writes an AP is related to all IHs including those that do not write APs
because its execution could be prevented by a non-terminating IH. This includes
the case of two IHs that both write APs: they are related because they both alter
the visible behavior of the program, and thus, all their possible interleavings are
relevant.

The transitive-reflexive closure of ./ is denoted by ./∗ and induces a parti-
tioning of IH. This partitioning is used in the following way. Whenever one of the
IHs has to be executed, all other IHs in its equivalence class have to be executed
as well. The algorithm to compute the dependency relation performs a nested
iteration over all IHs based on the conditions described above.

Detect Dependencies between Program and IHs. In the second step of
the analysis, [mc]square determines dependencies between the program and
the IHs and identifies program locations where interrupts have to be executed.
There exists a dependency between a program location and an IH if either one
influences the other or the program behavior is visibly changed. The latter is the
case if an instruction or an IH writes memory locations used in APs.

To detect the dependencies between the program and the IHs, [mc]square
marks specific program locations with the following two labels: execution and
barrier. The label execution implies that there exists a dependency between the
preceding program location and an IH, and thus, this IH needs to be executed
eventually. The label barrier denotes that there exists a dependency between
that program location and an IH, and therefore, this IH needs to be executed
before the instruction at that location is executed. Otherwise, visible behavior
could get lost. In the later refinement step, label execution can be moved until
a label barrier is reached.

Let program location k be a direct predecessor of program location l. For-
mally, for each i ∈ IH, l is labeled with executioni if one of the following conditions
is satisfied:

– k enables or disables i,
– k writes a memory location that is accessed by i, or
– k writes a memory location that is used in an AP.

These conditions are similar to the conditions for dependencies between IHs.
If k enables or disables an IH, this IH has to be executed eventually to exhibit

6



the changed behavior. The same applies if k writes a memory location that is
accessed by an IH. As interrupts are deactivated in the initial program location, a
program location has to enable interrupts before they can influence the program
or change the visible behavior of the program. Note that in the last condition
only k is mentioned and not a specific IH. If k writes an AP, each IH has to
be executed afterwards because the execution of an IH could either prevent the
execution of another instruction that writes an AP or the IH could itself write
an AP. If l is labeled with executioni , it is also labeled with executionj ∀j ∈ [i]./∗

because all IHs of the same equivalence class have to be executed at the same
location.

For each i ∈ IH, a program location l is labeled with barrieri if one of the
following conditions holds:

– i writes a memory location that is accessed by l,
– l enables or disables i,
– l writes a memory location that is accessed by i, or
– l writes a memory location that is used in an atomic proposition.

The first condition is different from the conditions for label executioni . If i
writes a memory location that is accessed by l, i has to be executed before l
is executed because otherwise a possibly changed behavior could get lost: the
execution of i after the execution of l could no longer influence the execution of
l. This condition shows the asymmetry between the program and the IHs. The
remaining conditions are duals of the conditions for label executioni . They are
used to guarantee that a possibly changed behavior is finally considered. If l is
labeled with barrieri , it is also labeled with barrierj ∀j ∈ [i]./∗ .

Refine Results. In the refinement step, [mc]square tries to reduce state
spaces further by moving executioni labels until their execution is actually re-
quired. This is possible because in the previous step, [mc]square only locally
labeled program locations where IH behavior was changed, but did not check
whether their changed behavior actually influences the program. During refine-
ment, the context is taken into account. An IH and all dependent IHs do not
have to be executed if all behavior relevant to the specification and the program
is created through their execution at another program location. Therefore, it is
sufficient to execute IHs at only one of these locations. In the refinement step,
[mc]square moves labels executioni forward until one of the following conditions
holds:

– a program location labeled with barrieri is reached,
– a loop entry is found, or
– a loop exit is found.

This further reduces state spaces by postponing the execution of IHs until
required. The label executioni cannot be moved over a program location labeled
with barrieri because it either influences the next instruction or the next in-
struction influences its behavior, and it has not yet been executed. Furthermore,

7



a label executioni is not moved into a loop because this would possibly increase
the size of the state space. Moreover, it is not moved out of a loop because loop
termination cannot be guaranteed and divergent behavior has to be preserved
in the abstract system.

Label Blocking Locations. In the last step, all program locations are labeled
with IHs that can be blocked at the corresponding program location. An IH
can be blocked at a program location if its execution is not required. Thus, a
program location is labeled with blockingi if it is not labeled with executioni .

3.3 An Example

To illustrate the IHER abstraction technique, we give an example. We apply this
analysis to the program shown in Fig. 2(a) and the IH presented in Fig. 2(b).
In the main program, interrupts are first enabled and then some calculations
are executed on registers r1, r2, and r3. The IH accesses only register r1 and
doubles its value. No atomic propositions are used in this example.

l0 SEI enable interrupts
l1 LD r2,5 r2 ← 5
l2 ADD r1,r2 r1 ← r1 + r2
l3 MOV r2,r1 r2 ← r1
l4 MOV r3,r2 r3 ← r2
l5 CLI disable interrupts
l6 RJMP -1 self loop

(a) Main program

i0 ADD r1,r1 r1 ← r1 + r1
i1 RETI return

(b) Interrupt handler

Fig. 2. Assembly code of the main program and the interrupt handler (excerpt)

In this example, only one IH is used, and therefore, the first step of the
analysis can be omitted. In the second step, we label the program locations with
execution and barrier . Here, we omit the indices for clarity. The resulting labeled
CFG is depicted in Fig. 3(a). White circles represent program locations without
labels, white octagons represent locations labeled with barrier , and grey nodes
represent program locations labeled with execution. Edges are labeled with the
corresponding instruction or IH respectively.

Locations l1, l3, and l6 are labeled with execution because their preceding
instructions influence the IH. Locations l2 and l3 are labeled with barrier as the
IH influences the current instruction. Hence, the IH has to be executed not later
than at these locations. Locations l0 and l5 are labeled with barrier because
interrupts are enabled or disabled by the respective instruction.

In the refinement step, execution labels are moved forward until either a
barrier label or a loop is reached. The result of this step for the program is
shown in Fig. 3(b). Here, only the execution label of l1 is moved to l2 because
l2 is a barrier. The execution label in l6 cannot be moved due to the self loop.

8



l1 l2 l3 l4 l5 l6l0
SEI LD r2,5 ADD r1,r2 MOV r2,r1 MOV r3,r2 CLI

ih ih ih ih ihih ih

RJMP -1

(a) Before refinement

l0 l1 l2 l3 l4 l5 l6
SEI LD r2,5 ADD r1,r2 MOV r2,r1 MOV r3,r2 CLI

ih ih ih ih ihih ih

RJMP -1

(b) After refinement

Fig. 3. CFGs of the code shown in Fig. 2

These labels are then translated into blocking locations. In Fig. 4 the dif-
ferences in IH execution with and without IHER are shown. Figure 4(a) shows
that without applying IHER, the IH is executed at five program locations be-
cause interrupts are disabled in l0 and l6. The application of IHER leads to the
execution of the IH at only two locations as depicted in Fig. 4(b).

l1 l2 l3 l4 l5 l6l0
SEI LD r2,5 ADD r1,r2 MOV r2,r1 MOV r3,r2 CLI

ih ih ih ih ih

RJMP -1

(a) Without IHER

l0 l1 l2 l3 l4 l5 l6
SEI LD r2,5 ADD r1,r2 MOV r2,r1 MOV r3,r2 CLI

ih ih

RJMP -1

(b) Using IHER

Fig. 4. Comparison of IH executions for program shown in Fig. 2

9



4 Formal Model & Correctness Proof

This section introduces the formal model on which the correctness proof of our
abstraction technique is based. It is defined in two steps: (1) The syntactic struc-
ture of the microcontroller program is represented by its CFG, which consists of
the program locations connected by control flow edges. Here, each edge carries
an action label and a Boolean expression. The former represents the execution
of either a single machine instruction or of a complete IH. The latter acts as a
guard controlling the execution of, for instance, conditional branching instruc-
tions or IHs in dependence of the memory state. Note that single instructions of
IHs are not considered as we assume their execution to be atomic. (2) Semantics
is involved by associating with every action a mapping on the data space of the
program, that is, the memory contents. This gives rise to a labeled transition sys-
tem in which each state is given by a program location and a data state, where
the latter represents the contents of general-purpose registers, I/O registers, and
memory locations. Thus, the correctness proof boils down to showing that the
original and the reduced CFG yield equivalent labeled transition systems.

4.1 The Formal Model

Formally, the CFG of the program is given by G = (L, l0, A,B,−→) where

– L is a finite set of program locations,
– l0 ∈ L is the initial location,
– A is a finite set of actions,
– B is a finite set of guards, and
– −→ ⊆ L × A × B × L is the control flow relation (where each entry is

represented as l a,b−→ l′ with l, l′ ∈ L, a ∈ A, and b ∈ B).

The introduction of guards allows to model, e.g., conditional branching instruc-
tions by two transitions with the same action and different guards, which indicate
the outcome of the evaluation of the condition.

The semantics of a CFG is determined by associating with every action a ∈ A
a mapping JaK : D → 2D, and with every guard b ∈ B a mapping JbK : D → B.
Here, D stands for the data space, that is, the finite set of memory states of the
program. Interpreting JaK(d) as a set of memory states allows us to model the
non-deterministic nature of certain instructions, such as reading operations on
input registers. Each of these sets is required to be non-empty and finite. A set
is a singleton if the respective action is deterministic.

Applying this semantics to the given CFG G yields a labeled transition system
T (G) = (S, s0, A,=⇒, P, λ), which is defined as follows:

– S := L×D is the finite set of states,
– s0 := (l0, d0) ∈ S is the initial state where d0 ∈ D stands for the initial data

state,
– A is the finite set of actions (as before),

10



– =⇒ ⊆ S × A × S is the transition relation, given by: whenever l a,b−→ l′

in G and d ∈ D such that JbK(d) = true, then (l, d)
a

=⇒ (l′, d′) for every
d′ ∈ JaK(d),

– P is a finite set of atomic propositions, and
– λ : S → 2P is the property labeling.

4.2 Correctness of the Abstraction

As explained in Sect. 3, IHER reduces the state space of the system by blocking
IHs at program locations where they are independent of the main program. In
other words, it removes certain transitions from the CFG (but keeps all loca-
tions), leading to a reduced graph G] = (L, l0, A,B,−→]) with −→] ⊆ −→.
According to the previous definition, G] then yields a reduced labeled transition
system T (G]) = (S], t0, A,=⇒], P, λ]) with S] ⊆ S, t0 = s0, =⇒] ⊆ =⇒, and
λ] = λ|S]

.
We will now establish the correctness of our abstraction technique by show-

ing that the original and the reduced transition system are equivalent. More
concretely we will see that T (G) and T (G]) are related by a divergence-sensitive
stutter bisimulation, implying that our abstraction mapping preserves the valid-
ity of formulas in CTL*-X [8].

We begin with the definition of a stutter bisimulation [9], which is a binary
relation ρ ⊆ S × S] such that s0ρt0 and, for all sρt,

– λ(s) = λ](t),
– if s a

=⇒ s′ with (s′, t) /∈ ρ, then there exists a path t a0=⇒] u1
a1=⇒] . . .

an−1
=⇒ ]

un
an=⇒] t

′ with n ≥ 0, sρui for every i ∈ {0, . . . , n− 1}, and s′ρt′, and
– if t a

=⇒] t
′ with (s, t′) /∈ ρ, then there exists a path s

a0=⇒ u1
a1=⇒ . . .

an−1
=⇒

un
an=⇒ s′ with n ≥ 0, uiρt for every i ∈ {0, . . . , n− 1}, and s′ρt′.

Thus, a stutter bisimulation requires equivalent states to be equally labeled, and
every outgoing transition in one system must be matched in the other system
by a transition to an equivalent state, but allowing some transitions that are
internal to the equivalence class of the source state. Note that action labels are
not important here.

In our application, a stutter bisimulation ρ ⊆ S × S] between the original
and the reduced system can inductively be defined as follows:

1. s0ρt0,
2. if sρt, a ∈ A, s′ ∈ S, and t′ ∈ S] such that s a

=⇒ s′, t a
=⇒] t

′, and λ(s′) =
λ](t

′), then s′ρt′, and
3. if sρt, a ∈ A, and s′ ∈ S such that s a

=⇒ s′ and t has no a
=⇒]-successor,

then s′ρt.

This definition handles the following three cases: (1) it relates the initial states,
(2) it relates states that are reachable from stutter-bisimilar states in both sys-
tems via the same machine instruction or via the same (non-blocked) IH, and

11



(3) it relates a state that is reachable via some IH in the original system with
the state in the reduced system where this IH is blocked.

The following arguments show that ρ is indeed a stutter bisimulation; details
are omitted for lack of space. First, whenever sρt with s = (l, d) ∈ S and
t = (l], d]) ∈ S], then l = l] and λ(l, d) = λ](l], d]). This is obvious in cases 1
and 2 of the definition of ρ, and also valid in 3 as the blocked IH returns to the
same program location (implying l = l]), and must be invisible with respect to
the atomic propositions (implying λ(l, d) = λ](l], d])).

Second, the remaining requirements of a stutter bisimulation follow from the
observation that, whenever sρt (where s ∈ S and t ∈ S]),

– if s a
=⇒ s′ with (s′, t) /∈ ρ, then case 3 cannot apply as s′ρt otherwise. Hence,

there exists t′ ∈ S] such that t a
=⇒] t

′. For at least one of these states, it
must be true that λ(s′) = λ](t

′) (since λ(s) 6= λ](t) otherwise, contradicting
sρt), and hence s′ρt′;

– if t a
=⇒] t

′ with (s, t′) /∈ ρ, then again case 2 must apply with s a
=⇒ s′ and

s′ρt′.

The last step in our correctness proof consists of showing that both the
original and the reduced transition system exhibit the same behavior with respect
to non-terminating computations. Formally, a state s ∈ S in a labeled transition
system (S, s0, A,=⇒, P, λ) is called ρ-divergent with respect to an equivalence
relation ρ ⊆ S × S if there exists an infinite path s a1=⇒ s1

a2=⇒ s2
a3=⇒ . . . such

that sρsi for all i ≥ 1. The relation ρ is called divergence-sensitive if, for every
s1ρs2, s1 is ρ-divergent iff s2 is ρ-divergent.

Again, it can be shown that the stutter bisimulation ρ ⊆ S × S] as de-
fined above is also divergence-sensitive, the essential arguments being that non-
terminating computations only occur in the form of cycles (as the state space is
finite), and that our abstraction technique never completely blocks the execution
of an IH in a loop, and therefore preserves divergence. This completes the proof
that our abstraction technique is correct with respect to formulas in CTL*-X.

5 Case Study

This section describes a case study conducted with [mc]square using the IHER
technique. We analyzed five programs for the ATMEL ATmega16 to evaluate the
performance of our abstraction method. All programs were written by students
during lab courses or diploma theses and have previously been used to evaluate
the impact of other techniques developed for [mc]square. A more thorough
description of the analyzed programs is given by Schlich [1]. Note that for all
programs, delayed nondeterminism (DND) [2] is used, which affects state space
sizes by delaying the instantiation of nondeterministic values until their concrete
value is required. This way, [mc]square can handle programs of up to 4 billion
(symbolic) states. The larger programs used in this case study could not be
checked without DND.

12



The differences in state space sizes with and without IHER are presented in
Table 1. It shows the numbers with and without dead variable reduction (DVR)
enabled, which reduces state spaces by removing unused variables. Here, the
formula AG true was checked as it requires the creation of the complete state
space.

Two different versions of a controller for a powered window lift used in a
car were analyzed, one of which containing defects caused by missing protec-
tion of shared variables, and a second one where those errors were fixed. Both
programs consist of 290 lines of assembly code and use two interrupts and one
timer. Depending on the applied static analysis techniques, the state space sizes
are reduced by between 64% and 82%. The second program controls a fictive
chemical plant. It consists of 225 lines of assembly code. One timer and two in-
terrupts are used. The IHER technique reduced the state space by approx. 98%.
The last program implements a four channel speed measurement with a CAN
bus interface. It consists of 384 lines of assembly code. The state spaces were
reduced by approx. 89%.

Table 1. Number of states stored by [mc]square

Without DVR Default Time [s] IHER Time [s] Reduction
window_lift.elf (error) 316,334 6.25 64,164 7.32 80%
window_lift.elf (fixed) 129,030 2.81 23,852 6.04 82%
plant.elf (error) 123,699,464 3,428 2,161,624 43 98%
plant.elf (fixed) 75,059,765 1,956 1,327,715 25 98%
can.elf 147,259,483 3,917 16,187,483 392 89%
With DVR Default Time [s] IHER Time [s] Reduction
window_lift.elf (error) 111,591 6.73 28,153 8.21 75%
window_lift.elf (fixed) 23,013 5.52 14,919 6.89 64%
plant.elf (error) 123,699,464 3,513 2,161,624 42 98%
plant.elf (fixed) 75,059,765 1,940 1,327,715 25 98%
can.elf 147,259,483 3,954 16,187,483 394 89%

These results show that the IHER abstraction technique greatly reduces state
spaces for a number of different programs. This is still true in the presence of
other abstraction techniques such as DVR, meaning that both can be combined.
The magnitude of improvement depends on various factors such as the number
of interrupts used, dependencies between IHs and instructions, dependencies be-
tween IHs, the overall structure of the program, and the property to be verified.

6 Related Work

In the past, much work has been carried out to limit the state explosion in
model checking resulting from concurrent activities in a system. A prominent
technique is partial order reduction (POR) [10,11,12], which tries to reduce the

13



number of possible orderings of concurrent actions that need to be analyzed
for model checking. This reduction is based on two important notions, namely,
independence and visibility. Here, the first characterizes the commutativity of
two actions, meaning that the execution of either of them does not disable the
other and that executing both in any order always yields the same result. The
second notion, visibility, refers to the property that the execution of an action
does not affect the (in)validity of the formula to be checked. Together, both
properties allow to reduce a transition system by only exploring a subset (the
ample set) of all transitions enabled in a given state. A general overview of
concepts related to POR is given by Valmari [13].

As pointed out in the introduction, our technique differs from POR in the
following way. POR works in the context of concurrent threads while IHER
works in the context of sequential programs and pseudo-parallelism introduced
by IHs. Threads differ from IHs in that the interleaving between different threads
is nondeterministic. For IHs only their occurrence is nondeterministic, that is,
either they occur at a program location or they do not occur at a program
location. Threads can be interrupted at any location since control can change
nondeterministically between all threads. An IH, however, can interrupt the main
program, but the main program cannot interrupt an IH. This means that an IH
has to be executed completely until execution of the main program can continue.
The same asymmetry applies in case that IHs can interrupt other IHs. Due to
this asymmetry, we have to account for additional dependencies between the
main program and IHs. In POR, all atomic actions are guaranteed to terminate.
Since we represent IHs as atomic actions which can contain non-terminating
loops, atomic actions are not guaranteed to terminate in our setting.

IHs could be modeled using threads. Techniques for converting interrupt-
driven programs into equivalent programs using threads have been developed by
Regehr and Cooprider [14]. This modeling can be done on source code level, but
it involves some challenges. The peculiarities of interrupts vary between different
microcontrollers. On some microcontrollers, IHs are non-interruptible while IHs
can be interrupted on other microcontrollers. In some architectures interrupts
have no priorities, in other architectures they have fixed or even dynamic priori-
ties. This approach can, however, not be used for microcontroller assembly code
as there is no thread model for microcontroller assembly code.

Kahlon et al. [15] developed an extension for partial order reductions using
sound invariants. In their approach, the product graph of a concurrent system
is iteratively refined, and statically unreachable nodes are removed. In contrast
to our approach, only a context-insensitive static analysis is performed.

The notion of independent actions based on Lipton’s theory of reduction [16]
was introduced by Katz and Peled [17]. Our definition of dependencies between
the main process and IHs can also be seen as an extension of Lipton’s theory
where, in addition to the dependencies that are induced by accesses to shared
variables, also the control dependencies imposed by enabling and disabling in-
terrupts are taken into account.

14



Recently, Elmas et al. [18] have described a proof calculus for static verifica-
tion of concurrent programs using shared memory. In this approach, the concept
of atomicity is used for computation of increased atomic code blocks, which are
then, in contrast to our approach, verified sequentially.

A static analysis based on Petri nets to capture causal flows of facts in con-
current programs was proposed by Farzan and Madhusudan [19], but it only
implements a restricted model of communication and synchronization compared
to our setting. Another approach by Lal and Reps [20] adapts static analyses for
sequential programs and extends them to work in a concurrent setting while our
approach embodies specific analyses for concurrency. Other approaches, such as
the work by Qadeer and Rehof [21] or Lal et al. [22], tackle the state explosion
by imposing an upper bound on the number of context-switches, which is not
possible in our setting.

7 Conclusion & Future Work

In this paper, we have presented a new abstraction technique called interrupt
handler execution reduction, which is based on partial order reduction. It reduces
state spaces by blocking the execution of interrupt handlers at certain program
locations during model checking. It preserves the validity of CTL*-X and, as
shown in the case study presented in Sect. 5, can significantly reduce state spaces.
Two ingredients are needed for implementing this abstraction technique: a static
analysis and a dynamic part executed during model checking. The static analysis
determines program locations where interrupt handlers can be blocked. The
model checking part then prevents the execution of the corresponding interrupt
handlers at these program locations.

In the future, we want to improve the static analysis that is used for this
abstraction technique. Currently, we rely on a coarse analysis of pointer variables.
In many cases, our analysis has to over-approximate the set of possible address
values. A more precise pointer analysis would improve the results of other static
analyses such as live variable and reaching definitions analysis as well.

Another candidate for improvement is the refinement phase. From our point
of view, there is no optimal static solution to this problem. We think that better
heuristics can be found if termination of certain loops can be determined. Given
this, we could postpone the execution of interrupt handlers beyond these loops.

References

1. Schlich, B.: Model Checking of Software for Microcontrollers. Dissertation, RWTH
Aachen University, Aachen, Germany (June 2008)

2. Noll, T., Schlich, B.: Delayed nondeterminism in model checking embedded systems
assembly code. In: Hardware and Software: Verification and Testing (HVC 2007),
Haifa, Israel. Volume 4899 of LNCS., Springer (2008) 185–201

3. Herberich, G., Noll, T., Schlich, B., Weise, C.: Proving correctness of an efficient
abstraction for interrupt handling. In: Systems Software Verification (SSV 2008).
Volume 217 of ENTCS., Elsevier (2008) 133–150

15



4. Emerson, E.A.: Temporal and Modal Logics. In: Handbook of Theoretical Com-
puter Science. Volume B. The MIT Press (1991) 995–1072

5. Yorav, K., Grumberg, O.: Static analysis for state-space reductions preserving
temporal logics. Formal Methods in System Design 25(1) (2004) 67–96

6. Brauer, J., Schlich, B., Reinbacher, T., Kowalewski, S.: Stack bounds analysis for
microcontroller assembly code. In: 4th Workshop on Embedded Systems Security
(WESS 2009), Grenoble, France, ACM (2009) To appear.

7. Heljanko, K.: Model checking the branching time temporal logic CTL. Research
Report A45, Helsinki University of Technology, Digital Systems Laboratory, Espoo,
Finland (May 1997)

8. Browne, M., Clarke, E., Grumberg, O.: Characterizing finite kripke structures in
propositional temporal logic. Theor. Comput. Sci. 59(1-2) (1988) 115–131

9. van Glabbeek, R., Weijland, W.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43(3) (1996) 555–600

10. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Computer Aided Verification (CAV 1990), New Brunswick, USA. Volume 531 of
LNCS., Springer (1990) 176–185

11. Holzmann, G.J., Peled, D.A.: An improvement in formal verification. In: Formal
Description Techniques VII. IFIP International Federation for Information Pro-
cessing, Springer (1995) 197–211

12. Peled, D.: Ten years of partial order reduction. In: 10th Int. Conf. on Computer
Aided Verification (CAV ’98). Volume 1427 of LNCS. (1998) 17–28

13. Valmari, A.: The state explosion problem. In: Petri Nets. Volume 1491 of LNCS.,
Springer (1996) 429–528

14. Regehr, J., Cooprider, N.: Interrupt verification via thread verification. Electronic
Notes in Theoretical Computer Science 174(9) (2007) 139–150

15. Kahlon, V., Sankaranarayanan, S., Gupta, A.: Semantic reduction of thread inter-
leavings in concurrent programs. In: Tools and Algorithms for Construction and
Analysis of Systems (TACAS 2009), York, UK. Volume 5505 of LNCS., Springer
(2009) 124–138

16. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Communications of the ACM 18(12) (1975) 717–721

17. Katz, S., Peled, D.: Defining conditional independence using collapses. Theoretical
Computer Science 101(2) (1992) 337–359

18. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Principles of
Programming Languages (POPL 2009), Savanna, USA, ACM (2009) 2–15

19. Farzan, A., Madhusudan, P.: Causal dataflow analysis for concurrent programs.
In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007), Braga, Portugal. Volume 4424 of LNCS., Springer (2007) 102–116

20. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to se-
quential analysis. In: Computer Aided Verification (CAV 2008), Princeton, USA.
Volume 5123 of LNCS., Springer (2008) 37–51

21. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS 2005),
Edinburgh, UK. Volume 3440 of LNCS., Springer (2005) 93–107

22. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent
programs under a context bound. In: Tools and Algorithms for Construction and
Analysis of Systems (TACAS 2008), Budapest, Hungary. Volume 4963 of LNCS.,
Springer (2008) 282–298

16


