
TTSS 2010

On-The-Fly Path Reduction

Sebastian Biallas1 Jörg Brauer1 Dominique Gückel2

Stefan Kowalewski1

Embedded Software Laboratory
RWTH Aachen University

Aachen, Germany

Abstract

Path reduction is a well-known technique to alleviate the state-explosion problem incurred by
explicit-state model checking, its key idea being to store states only at predetermined breaking
points. This paper presents an adaptation of this technique which detects breaking points on-the-fly
during state-space generation. This method is especially suitable for the detection of breaking points
in systems where static analyses yield coarse over-approximations. We evaluate the effectiveness of
this technique by applying it to binary code verification.

Keywords: verification, model checking, state explosion, path reduction

1 Introduction

Despite a significant amount of research on abstractions, state explosion is
still a major obstacle for the applicability of (explicit-state) software model
checking to real-world applications [5]. One such abstraction for CTL model
checking is the so-called path reduction [18]. The key idea of path reduction
is to collapse single-successor chains in the state space if intermediate states
cannot influence the validity of a specification. This means that states are only
stored when visiting program locations that cause a branching in the state space
or influence the validity of the CTL specification. These program locations
are called breaking points. For instance, a program statement that alters the
value of a variable used in an atomic proposition or reads a nondeterministic
value, which causes a branching in the state space, is called a breaking point.

1 Email: {lastname}@embedded.rwth-aachen.de
2 Email: gueckel@embedded.rwth-aachen.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Biallas et al

Storing states only at these specific locations reduces the memory footprint of
the state space, possibly at the cost of increased runtime.

In their seminal paper, Yorav and Grumberg [18] have described the de-
tection of breaking points using static analysis for the model checker Murϕ.
Due to the rather limited nature of the input language used in Murϕ, break-
ing points can be determined accurately for this specific tool. However, this
is not always so. A domain where this approach may lead to coarse over-
approximations is binary code verification for embedded systems [13,14]. This
has different reasons, for example:

• Programs for low-level platforms are frequently interrupt-driven. In this
case, states have to be stored at any program location where interrupts
may fire because the execution of an interrupt handler is optional, and thus
causes a split in the state space.

• Nondeterminism is often introduced through the hardware itself. Reading the
value of the same register, say, an input port, may lead to either deterministic
or nondeterministic values, depending on the exact hardware configuration.
Unfortunately, no static analysis techniques are known that can infer the
state of the hardware as precisely as required.

• To guarantee termination of the model-checking process, states need to be
stored in possibly nonterminating loops (for fixed-point detection). Thus, at
least one location in each loop has to be breaking. Despite the advances in
termination proofs for high-level programs [7], these techniques are not yet
applicable to low-level code.

Consequently, path reduction for binary code model checking based on
static analysis does not reach the effectiveness known from other domains [14,
Sect. 6.2]. Binary code model checkers, however, typically generate state
spaces using dedicated simulators of the target microcontroller. The exact
configuration of the microcontroller is thus known during state-space building.
For example, when simulating an indirect store instruction, the concrete target
address of this instruction is known, and breaking-point detection does not
have to rely on conservative over-approximations.

Our main contribution in this paper is a new technique called on-the-fly
path reduction, which performs state-space reductions dynamically while state
spaces are built (see Sect. 2). This technique is novel in that it performs
tasks such as detecting fixed points while states are generated. We also detail
how to expand counterexamples obtained with path reduction to concrete
counterexamples [3,6] (see Sect. 3). To evaluate the effectiveness of on-the-fly
path reduction, we compare its performance to results obtained using static
detection of breaking points in Sect. 4. Finally, Sect. 5 presents related work
and Sect. 6 concludes the paper.

2

Biallas et al

2 Reducing Paths On-the-fly

We implemented the path reduction by static analysis (SPR) and the new
on-the-fly path reduction (OPR) for the model checker [mc]square [13]
which we used for our case studies. This section details the motivation and
implementation of the algorithms.

2.1 Preliminaries

[mc]square uses an on-the-fly model checking algorithm according to [8].
This means the state space is generated on-the-fly: A state corresponds to a
configuration of the microcontroller and if the model checker needs to follow
successor states that are not created yet, the simulator is used to create them
on demand. A path reduction algorithm needs to cope with the on-the-fly
generation of states. That is, instead of returning the direct successors by
executing a single instruction, the simulator should follow a path of subsequent
instructions returning the next state that should show up in the reduced
state space. What qualifies a state as the next state (and hence determines
the reduced state space) needs to be selected in a way that the reduction is
indistinguishable by CTL−X logic. Here, CTL−X denotes the logic CTL without
the next time operator X , which cannot be used for reduced state spaces.
We call states which match such a criterion and thus are used as the new
successor states breaking. A path (a, b1, b2, . . . , bn, c) where at most a and c
are breaking is called elementary path. So each transition in the reduced state
space corresponds to an elementary path in the original state space.

As an example, Fig. 1 shows a state space with 14 states labelled a to n. The
corresponding reduced state space is shown in Fig. 2. Although only the four
breaking states a, c, f and n remain, the state space is stuttering bisimilar [2,16]

a

b

c

ed f g

ih j k

nml

Fig. 1. Example state space

a

c

f

n

Fig. 2. With path reduction applied

3

Biallas et al

to the original state space. This is achieved by merging elementary paths
like (c, e, i, n), where the intermediate states have only one successor, into a
single transition (c, n). Note that such a pruning of states is also possible for
loops like (c, d, h,m, l, c) which is merged into the transition (c, c). Note also
that state b does not show up in the reduced state space although it has two
predecessors. The loop (f, j, g, k, f), however, requires special treatment, since
none of its states have multiple successors.

We will now evaluate the criteria for a state to be breaking, i. e., to show
up in the reduced state space. For SPR, this criterion solely depend on the
program counter. Here, breaking program locations (breaking points) are
found using static analysis. Afterwards, for each state with a program counter
matching these values the path pruning algorithm stops during state space
generation. The static analysis [18,14] selects each location as a breaking point,

• where a nondeterministic interrupt can be triggered, or

• where the corresponding instruction performs some nondeterministic opera-
tion as reading from an input register, or

• where the corresponding instruction alters the value of a variable (memory
location) used as an atomic proposition in the CTL formula, or

• which is target of a jump (or other control transfer) instruction.

The first two conditions make locations breaking where the corresponding
state has more than one successor in the state space. The third condition
guarantees that all changes of variables used in the formula are visible to the
model checker. Finally, the fourth condition ensures the existence of a breaking
point in every loop in the program, such that every loop in the state space has
at least one breaking state for fix-point detection.

As mentioned in the introduction, using static analysis to determine the
breaking points usually yields a coarse over-approximation and thus assumes
more locations breaking than necessary. For example, a read-operation on
an I/O port which is configured for input returns a nondeterministic value,
which in turn leads to a branching in the state space. The corresponding
program location is thus marked as breaking. However, an I/O port may also
be configured for output, which means that it stores a deterministic value. In
this case, the corresponding program location does not need to be breaking.
Since static analysis fails to accurately capture such bit-level dependencies of
the hardware, it computes overly pessimistic results. Additionally, the fourth
condition makes it impossible to prune long running loops of the program into
a single transition. In the next subsection, we will focus on the new OPR that
uses criteria which can be evaluated on-the-fly to determine whether a state is
breaking and thus can handle these issues.

4

Biallas et al

2.2 On-the-fly Path Reduction

The general idea of OPR is that we decide for each state (instead of each
program location) whether it is breaking by evaluating its local neighborhood.
This decision is made during state space generation, and we therefore need
conditions that can be checked on-the-fly: While generating states along a
elementary path, the OPR assumes a state as breaking if

• it has more than one successor, or

• the truth value of a atomic proposition changes after the transition to its
(sole) successor, or

• it was already visited in this elementary path.

The first condition assures that states where a nondeterministic decision has
to be taken (such as the execution of an interrupt or a read from a hardware
register) show up in the state space. To maintain visibility of all changes to the
model checker, the second condition assures that at most one transition might
influence the formula in each elementary path. The last criterion is needed to
guarantee termination and will be studied in detail later on. First, we formally
describe the algorithm for the OPR successor state generation:

Algorithm 1 Generate successors of state in reduced state space
Input: sourceState
Output: successors of sourceState in the reduced state space
1: successors ← createDirectSuccessors(sourceState)
2: resultSuccessors ← {}
3: for all state in successors do
4: current ← state
5: visited ← {}
6: repeat
7: visited ← visited ∪ {current}
8: nextStates ← createDirectSuccessors(currentState)
9: next ∈ nextStates

10: breaking ← |nextStates| 6= 1 or atomics(current) 6= atomics(next)
11: if not breaking then
12: current ← next
13: end if
14: until breaking or current ∈ visited
15: resultSuccessors ← resultSuccessors ∪ {current}
16: end for
17: return resultSuccessors

For each direct successor, the inner loop (lines 6–14) of the algorithm
follows its elementary path (line 12) until a breaking state is found. The first

5

Biallas et al

two breaking conditions are checked in line 10. In the next section it will be
described how to implement the loop detection in line 7 and line 14, which is
used to meet the third condition for breaking states.

2.3 Loop Detection

We describe three different criteria for the detection of loops in elementary
paths, which can be checked one-the-fly:

• Stop if the same the same program counter is encountered twice.

• Stop if the same state is encountered twice.

• Stop if the same hash code of a state is encountered twice.

The first criterion is inspired by SPR and guarantees that every loop (in the
program and thus in the state space) contains at least one breaking instruction.
The drawback is that each loop without nondeterministic control flow (for
example a memory copy or initialization), will create at least one state in the
state space for each iteration.

To prune such loops, the second criterion takes the whole microcontroller
configuration into account, that is, all states along elementary paths are
temporarily stored and a state is assumed breaking once is already in this list.
Since states have finite size, this is guaranteed to terminate for all loops. This
detangles loops in the control flow from loops in the state space and hence
allows for representing loops as single transitions.

The third criterion is an improvement of the second criterion. It takes just
the 64 bit hash code of the raw state data as a criterion for detecting already
encountered states. This is faster and less memory intense, since only the
hashes of all intermediate states have to be stored while simulating along an
elementary path. As our case study will show, the third criterion offers the
high accuracy while being a very fast possibility to detect a loop in the state
space.

To summarize, the advantages of the OPR introduced so far are:

• There is no need for static analysis, which yields more accurate results.

• Our algorithm is independent of the microcontroller simulator used for the
state generation. For SPR, on the other hand, detailed knowledge of the
microcontroller is necessary to detect breaking states.

• It is possible to prune program loops with many iterations into single
transitions.

While this section dealt with reducing paths to alleviate the state explosion,
we will discuss how to re-expand paths to create meaningful counterexamples
in the next section.

6

Biallas et al

3 Expanding Reduced Paths for Counterexamples

Counterexamples/Witnesses are paths (possibly with loops) in the state space,
showing how some undesired property is reached or some desired property is
never reached. Counterexamples provide crucial information to help under-
standing why formulae are valid or violated [4]. A counterexample for the
formula AG x 6= 5, for instance, would show a path (and thus all nondetermin-
istic inputs) that leads to a state where x equals 5. A counterexample for the
formula AF x = 6, on the other hand, would show a path into a loop, such
that x = 6 is never valid.

In a reduced state space, counterexamples are less useful. To illustrate,
consider Fig. 3 where the counterexample trace (a, c, d) is shown; the formula
is false in state d. States omitted by the path reduction (b and b′) are shown
as dotted circles. To understand such a counterexample trace, it is crucial to
know which nondeterministic decision has been taken for the (a, b) transition.
Unfortunately, this information is not readily available from the (a, c) transition
visible in the counterexample trace: State c might be too far away to distinguish
the (a, b) transition from the (a, b′) transition without manual investigation.

To remedy this problem, we implemented means to reverse the effect of
path reduction on given counterexample traces in [mc]square by re-expanding
all reduced paths. Such re-expanded counterexamples are then identical to
their corresponding traces in the original state space.

This is achieved in two steps. In the first step, all states omitted by the
path reduction are recreated using the simulator. For states with only one
successor, it is sufficient to create the direct successors until the next state on
the reduced path is reached. For states with more than one successor, however,
we have to find out which transition actually belongs to the counterexample.
This corresponds to the decision between the (a, b) and (a, b′) transitions in
Fig. 3. To decide which of these nondeterministic transitions belongs to the
counterexample, a breadth-first search for the target state c is started at node
a. The search terminates when state c is found. States with more than one
successor do not need to be followed because they are breaking and thus part
of the reduced state space. The path leading to state c is then added to the
counterexample making the nondeterministic decision shallow.

a b ... c d

b’ ...

TT TT ... TT FF

Fig. 3. Counterexample trace

... a b ... c

... a b

TT FF ... FF

Fig. 4. Counterexample shortening

7

Biallas et al

In the second step, states are dropped at the end of elementary paths
where the violation of the formula manifests itself in the first transition but is
noticed at the end of this path. Such a situation is depicted in Fig. 4 (upper
part). Let us assume that after the (a, b) transition the formula is violated,
i. e. the formula is true in state a but false in states b to c (recall that on each
elementary path only the first transition might influence the formula). Since
only a and c are stored in the reduced state space while the states in between
are omitted, the violation of the formula is detected in state c, yielding a
counterexample ending in c. It is desirable to have shortest counterexamples
(which highlight the first instruction invalidating a formula), and we thus
drop the states b to c. Formally, a path that ends in (. . . , a, c) in the reduced
counterexample is transformed into (. . . , a, b), where b is the direct successor
of a in the original state space. This is shown in the lower part of Fig. 4.

The remaining disadvantage of path reduction is the loss of the X operator
for CTL. As we perform model checking on the level of machine instructions,
the X operator is not of practical relevance anyway.

4 Case Studies

This section describes different experiments to examine the impact of OPR
with respect to different evaluation criteria: the effects of different approaches
for loop detection (see Sect. 4.1), a comparison to path reduction based on
static analysis (see Sect. 4.2), and the effects of CTL specifications on the
generated state spaces (see Sect. 4.3). All experiments were run on a SUN
Fire X4600 M2 server equipped with eight AMD Opteron dual-core processors
and 256 GiB of RAM. However, only a single processor was used in order to
obtain unbiased results.

4.1 Variants of On-the-fly Path Reduction

The first case study focuses on the effects of different loop-detection criteria
(cp. Sect. 2.3), which determine the termination of a path compression step.
In order to obtain realistic results, the program to be verified has to execute
several loop iterations, ideally with as little overlapping of the iterations as
possible. A program called vector from our benchmark set satisfies this
requirement. This program continuously reads inputs from the environment in
a nonterminating loop. The values are then interpreted as integer vectors and
used for different typical vector operations.

For each criterion, the model checker had to generate the entire state space
of the program. The results of these runs are shown in Tab. 1. The reference
values without any abstraction are shown in Tab. 2, in the entry for vector.

As expected, the “same pc” criterion results in the largest state space

8

Biallas et al

Criterion States stored States created Size [MB] Time [s]

Same PC 1,502,901 179,089,399 408.67 2,123

Same hash 4,656 496,768,475 23.7 4,891

Identity 4,656 496,768,475 23.7 5,057

Table 1
Loop-abortion criteria

of the three criteria. Compared to the state space size without applying
path reduction, this still amounts to a reduction by 96.83%. Comparing
states for identity in a byte-wise fashion results in a much smaller state space,
which is unsurprising. The interesting aspect of this experiment is thus to
determine whether the effort for identity checking has significant advantages
over the simpler checking for hash collisions. Regarding the number of stored
states, there is no difference between hash collision detection and state identity
detection for this particular program. This means that no two different states
are mapped to the same hash values. The time required when checking for
state identity, however, was slightly higher than for detecting hash collisions.

Judging from these results, we conclude that the checking for hash collisions
is an adequate compromise between runtime and memory consumption concerns.
Hence, in the following case studies, we use hash collision checking as the
default criterion in OPR.

4.2 Comparison to Other Abstraction Techniques

For the second set of experiments, we have used [mc]square to generate
state spaces on different levels of abstraction: (i) no abstraction, (ii) SPR, and
(iii) OPR. For a thorough evaluation, we present experimental results for five
different microcontroller programs. The results of the different runs are shown
in Tab. 2.

The first program is called light switch and models a reactive electrical
switch based on a state machine. The program uses two hardware timers, but
no interrupts. Model checking this extremely simple program with SPR results
in a reduction of the state space size by 73.88%, but it increases the number
of states created by 156.69%. In comparison, OPR reduces the state space
even further by 88.43%, relative to the original results. The lower number of
states stored in the state space also influences the number of states that have
to be recreated during model checking. Hence, the number of states created
increased by approx. 300%. For this small program, neither technique had a
noticeable effect on the memory consumption or the runtime. The memory
footprint in this case is largely influenced by the initial sizes of the hash tables
used for storing state spaces.

9

Biallas et al

The second program, called plant, controls a fictive chemical plant. Con-
sisting of 225 lines of code, it is slightly longer than light switch (162 lines).
Two interrupts and one timer are used in plant. SPR has a significant effect,
lowering the number of states stored by 93.44%. Again, OPR achieves better
results by reducing the number of states by as much as 97.54%. The increase in
the number of created states amounts to 13.96% for SPR, and 22.92% for OPR.
Hence, compared to the according numbers for light switch, the increase
is rather modest. This means that either the model checker has to revisit
fewer states, or that the length of the compressed paths is shorter. Memory
consumption using any of the path reduction techniques dropped to the vicinity
of the initial size of the hash tables.

In the next program, reentrance, a 16-bit integer variable is accessed
concurrently in the main process and in an interrupt handler. As the ATmega
has an 8-bit architecture, such accesses are non-atomic, thus leading to race
conditions. The reduction in states stored achieved by SPR is 93.84%. OPR
reduces the state space further by halving the number of remaining states,
yielding a reduction of 96.92%. The increase in runtime due to revisits was
10.85% for SPR and 11.94% for OPR.

An automotive application was used as the fourth program. The program
called window lift implements the functionality of an electric window lift for
cars. It is based on a state machine, which generates outputs depending on
its current state. To fulfill its task, it uses three interrupts and one 16-bit
timer. The state space for this program without any abstraction is rather large
compared to the previous programs, consisting of more than 2.3 million states.
SPR decreases this value by 92.2%, while OPR decreases it by 94.72%. The
runtime required for model checking is approximately doubled, with a slight
advantage for SPR. Memory consumption was reduced by 89.89% in case of
SPR and by 92.05% in case of OPR.

Our fifth case study used the aforedescribed program vector (cp. Sect. 4.1).
SPR resulted in a decrease of the number of states stored by 89.76%. OPR
outperformed this by three orders of magnitude, reducing the number of states
stored by 99.99%. This effectively reduced the amount of memory required for
the state space from more than 11.5 GB (no abstraction) to 23.7 MB (OPR).
SPR results in a reduction of 87.96% to approximately 1.4 GB, which can
still render the program manageable for model checking on desktop computers.
The time required when using SPR increased only by 1.55%, whereas OPR
results in an increase of 533%.

Considering that far less states are stored using OPR, this increase is
actually surprisingly low. An explanation for the large difference between
the two approaches to path reduction is the different handling of loops. In
order to guarantee termination of the state space generation in the presence
of program loops, SPR has to assume at least one position in the loop to be

10

Biallas et al

breaking (cp. [13]). In our implementation, this position is indicated by the
head of the loop. Thus, on each revisit of the program counter position of the
head, SPR terminates the current chain and stores a state. OPR, on the other
hand, does not have to store at the head of a loop (in fact, it is unaware of
the existence of the program loop), unless it uses the same program counter
approach for termination detection. Hence, OPR compresses loop iterations
far more efficiently.

Program Options States States Size Time

used stored created [MB] [s]

light switch

162 lines

none 4,268 6,296 21.6 0.42

SPR 1,115 16,175 20.9 0.79

OPR 494 25,223 20.7 0.88

plant

225 lines

none 130,524 135,949 52.28 2.33

SPR 8,552 154,921 22.6 2.81

OPR 3,205 167,114 21.4 3.03

reentrance

147 lines

none 107,649 110,961 44.4 2.60

SPR 6,628 123,003 22.0 2.08

OPR 3,312 124,207 21.3 1.40

window lift

289 lines

none 2,342,564 2,589,665 633.9 47.59

SPR 182,709 3,818,060 64.1 57.78

OPR 123,585 4,123,385 50.4 59.49

vector

930 lines

none 47,477,797 48,419,003 11,508,422 772

SPR 4,860,321 55,584,435 1,385,914 784

OPR 4,656 496,768,475 23.7 4,891

Table 2
Effects of different path reduction techniques on five microcontroller programs

4.3 Influence of Formulae

So far, we examined the effect of OPR when checking the formula AG TT ,
which is true in every state. In this section, we will now evaluate the effects of
OPR when checking actual formulae whose validity depend on variables. Since

11

Biallas et al

path reduction needs to store states when a transition influences the formula,
we expect an increase in the size of the state spaces.

For the first examinations, we decided to use the window lift program.
The results are shown in Tab. 3. As described in Sect. 4.2, the program models
an automotive electrical window lift, and is based on a state machine. The
state machine is implemented using a global integer variable called mode, which
is expected to assume only the values 0 to 6 at any time during execution.
Hence, our first test was to check this using the formula

(1) AG (mode ≥ 0 ∧ mode ≤ 6) ,

which could be verified after 54.83s.

The second test was to verify whether the sequence of states assumed by
mode satisfies a certain property. Whenever a sensor reports that there is an
object stuck in the window (mode = 5), the window lift is expected to open
completely (mode = 6) before allowing normal operation again (mode = 0),
which can by specified by the formula

(2) AG(mode = 5⇒
¬E (mode = 5 ∧ ¬mode = 6) U (¬mode = 5 ∧ ¬mode = 6)).

The program window lift contains a subtle error which prevents this property
from being satisfied. The error is based on the simultaneous occurrence of
two interrupts, which allows mode to skip the value 6. [mc]square correctly
discovered this error and created a counterexample consisting of 912 states.

Our second test program for this case study was plant, also described in
detail in Sect. 4.2. The first property to verify was, similar to window lift, to
verify that a global variable satisfies certain constraints, which can be specified
by the formula

(3) AG (tank ≥ 0 ∧ tank ≤ 4) ,

which could also be verified by [mc]square. The second property was then
to ensure the correct behavior of the plant in case of an emergency. For this
purpose, [mc]square had to check the formula

(4) AG(PORTA = 0x20 ⇒ AG PORTA = 0x20) ∧ EF (PORTA = 0x20),

which resulted in a counterexample with 1,643 states after expansion.

The truth value of all four formulae was the same compared to model
checking without OPR. Since formulae (2) and (4) were violated, the model
checker could prematurely stop the state space generation. Thus, the time
for model checking and the size of the state space is not comparable to the

12

Biallas et al

Program Formula States States Size Time

stored created [MB] [s]

window lift
(1) 226,452 3,792,507 78.33 54.83

(2) 11,665 207,964 24.52 3.64

plant
(3) 3,678 167,114 21.54 2.32

(4) 77 1,839 20.67 0.6

Table 3
Influence of formulae on state space sizes

other case studies. For the verification of formula (1), we have an increase of
83.24% of the state space size, while the time decreased slightly, due to the
smaller number of revisits. For formula (3), the increase of the state space size
is negligible.

5 Related Work

Path reduction based on static analysis for the model checker Murϕ was
first described by Yorav and Grumberg [18]. This technique is used in a
similar fashion in the Spin model checker [9] using a static analysis for its
input language Promela. Spin uses an intraprocedural static analysis (using
inlining), and compared to binary code, Promela is much simpler since (1)
communication between concurrent processes can only be performed using
distinguished statements and (2) it does not contain indirect control statements.

Later, Quiros [12] has adapted the approach of Yorav and Grumberg to a
bytecode language used in a virtual machine. This bytecode language is similar
to a parallel while language. This means that function calls are handled
using inlining, communication is performed at certain program locations, and
indirect control is not supported. Hence, SPR turns out to be effective for
this domain. Our own prior work [14] adapts these earlier approaches to the
domain of binary code verification by introducing tailored static analyses and
revising breaking conditions for binary code.

Behrmann et al. [1] implemented a similar technique for the model checker
Uppaal, which focuses on timed automata. Their approach is similar to
our implementation of SPR: they decided for a static analysis of the control
structure of the automata in order to obtain a so-called covering set of edges.
This set is used in order to guarantee termination in case of loops in the
state space. States that are targets of edges in the covering set have to be
stored, which exactly corresponds to the breaking property used in SPR. As
we have illustrated, this property can prove a significant disadvantage of SPR

13

Biallas et al

in the presence of long-running but terminating loops. Our contribution, OPR,
can handle such loops without storing states in each iteration. Pelanek [11]
conducted a survey of on-the-fly state space reduction techniques. He subsumes
techniques preserving stutter equivalence under the term of transition merging.
His survey, however, focuses on high-level representations.

Recently, Yang et al. [17] introduced dynamic path reduction for bounded
model checking of sequential programs. However, even though their technique
is named similarly, its purpose is to prune out infeasible executions paths
introduced by nondeterministic conditionals, and thus, must not be confused
with path reduction in the sense used in this paper. Their algorithm computes
weakest preconditions and unsatisfiable cores using SMT solving. Thus, both
their approach and their goals are fundamentally different from our work.

6 Concluding Discussion

6.1 Conclusion

This paper describes a new technique for dynamic path reduction and shows
the predominance of this method over approaches based on static analysis for
the specific application of binary code model checking. Further, it shows how
counterexamples generated using this abstraction technique can be expanded
in order to ease their comprehensibility. In terms of effectiveness, the OPR
approach allows for formidable state space reductions, comparing it to static
path reduction techniques. The smaller memory footprint, however, may lead
to higher runtimes. Thus, OPR provides a technique that allows to trade
runtime for memory.

6.2 Future Work

Another abstraction technique discussed by Yorav and Grumberg [18] is dead
variable reduction (DVR), the key idea being to reset variables whose value is
not going to be read in any subsequent program execution. However, DVR
for binary code suffers particularly from the presence of indirect reads in
binary code, where the source memory locations can often not be determined
accurately using static analysis [14, Sect. 6.1]. Consequently, it will be of
interest to evaluate if state space reductions as significant as those obtained
through OPR can be achieved using an on-the-fly adaptation of DVR [10,15].

Acknowledgement

This work was supported by the DFG Cluster of Excellence on Ultra-high
Speed Information and Communication (UMIC), German Research Foundation
grant DFG EXC 89. Further, the work of Sebastian Biallas was supported

14

Biallas et al

by the DFG. The work of Jörg Brauer and Dominique Gückel was, in part,
supported by the DFG Research Training Group 1298 Algorithmic Synthesis
of Reactive and Discrete-Continuous Systems (AlgoSyn). We thank Bastian
Schlich for sharing his thoughts on the ideas described in this paper.

References

[1] Behrmann, G., K. G. Larsen and R. Pelánek, To store or not to store, in: Computer Aided
Verification (CAV 2003), LNCS 2725 (2003), pp. 433–445.

[2] Browne, M., E. Clarke and O. Grumberg, Characterizing finite kripke structures in propositional
temporal logic, Theor. Comput. Sci. 59 (1988), pp. 115–131.

[3] Chaki, S., A. Groce and O. Strichman, Explaining abstract counterexamples, in: SIGSOFT FSE,
2004, pp. 73–82.

[4] Clarke, E. M., “The Birth of Model Checking,” Springer-Verlag, Berlin, Heidelberg, 2008, 1–26
pp.

[5] Clarke, E. M., O. Grumberg, S. Jha, Y. Lu and H. Veith, Progress on the state explosion problem
in model checking, in: Informatics - 10 Years Back. 10 Years Ahead, LNCS 2000 (2001), pp.
176–194.

[6] Clarke, E. M. and H. Veith, Counterexamples revisited: Principles, algorithms, applications, in:
Verification: Theory and Practice, LNCS 2772 (2004), pp. 41–43.

[7] Cook, B., A. Podelski and A. Rybalchenko, Termination proofs for systems code, in: PLDI
(2006), pp. 415–426.

[8] Heljanko, K., Model checking the branching time temporal logic CTL, Research Report A45,
Helsinki University of Technology, Digital Systems Laboratory, Espoo, Finland (1997).

[9] Holzmann, G. J., The engineering of a model checker: The Gnu i-protocol case study revisited,
in: Theoretical and Practical Aspects of SPIN Model Checking (SPIN 1999), LNCS 1680 (1999),
pp. 232–244.

[10] Lewis, M. and M. Jones, A dead variable analysis for explicit model checking, in: PEPM (2006),
pp. 48–57.

[11] Pelánek, R., On-the-fly state space reductions, Technical report, Masaryk University Brno,
Czech Republic (2005).

[12] Quirós, G., “Static Byte-Code Analysis for State Space Reduction,” Master’s thesis, RWTH
Aachen University (2006).

[13] Schlich, B., “Model Checking of Software for Microcontrollers,” Dissertation, RWTH Aachen
University, Germany (2008).
URL http://aib.informatik.rwth-aachen.de/2008/2008-14.pdf

[14] Schlich, B., J. Brauer and S. Kowalewski, Application of static analyses for state space reduction
to microcontroller binary code, Sci. Comp. Program. (2010), to appear.

[15] Self, J. P. and E. G. Mercer, On-the-fly dynamic dead variable analysis, in: SPIN, LNCS 4595
(2007), pp. 113–130.

[16] van Glabbeek, R. and W. Weijland, Branching time and abstraction in bisimulation semantics,
Journal of the ACM 43 (1996), pp. 555–600.

[17] Yang, Z., B. Al-Rawi, K. Sakallah, X. Huang, S. Smolka and R. Grosu, Dynamic path reduction
for software model checking, in: IFM ’09: Proceedings of the 7th International Conference on
Integrated Formal Methods (2009), pp. 322–336.

[18] Yorav, K. and O. Grumberg, Static analysis for state-space reductions preserving temporal
logics, Formal Methods in System Design 25 (2004), pp. 67–96.

15

http://aib.informatik.rwth-aachen.de/2008/2008-14.pdf

	Introduction
	Reducing Paths On-the-fly
	Preliminaries
	On-the-fly Path Reduction
	Loop Detection

	Expanding Reduced Paths for Counterexamples
	Case Studies
	Variants of On-the-fly Path Reduction
	Comparison to Other Abstraction Techniques
	Influence of Formulae

	Related Work
	Concluding Discussion
	Conclusion
	Future Work

	Acknowledgement
	References

