
SAT-Based Abstraction Refinement for
Programmable Logic Controllers

Sebastian Biallas, Jörg Brauer, Stefan Kowalewski
Embedded Software Laboratory

RWTH Aachen University
Email: {lastname}@embedded.rwth-aachen.de

Abstract—This paper studies the application of
counterexample-guided abstraction refinement to programs
written in Instruction List. More importantly, it presents an
approach for automatic abstraction refinement based on SAT
solving. This technique is based on an encoding of the semantics
of Instruction List in propositional Boolean logic. Since elegant
ideas and careful engineering have advanced SAT solvers to
the state they can rapidly decide satisfiability of structured
problems that involve thousands of variables, this approach
scales well in practice. The true force of this method, however,
is that a single description of the semantics of a program can be
used to perform abstraction refinement in a number of abstract
domains, including but not limited to intervals and bit sets,
thereby decoupling the refinement from the chosen abstraction.

I. INTRODUCTION

Programmable logic controllers (PLCs) are frequently used
to control safety-critical systems. Since failure of such systems
may have disastrous effects, the application of formal methods
to the software of such systems is highly desirable, if not
even recommended [1]. Two particular techniques that allow
to prove the absence of runtime errors are model checking [2]
and abstract interpretation [3]. In model checking, the behavior
of a system is formally specified with a model, and all paths
through the program are then exhaustively checked against its
requirements. The detailed nature of the requirements entails
that the program is simulated in a fine-grained way, sometimes
down to the level of individual bits. Because of the complexity
of this reasoning, there has been much interest in operating over
collections of states — which are equivalent in some sense —
rather than individual states. This approach ties model checking
to abstract interpretation [3], the key idea of which being to
simulate the execution of each concrete operation in a program
using an abstract counterpart over a collection of states. The
notion of abstraction, however, entails an inevitable loss of
precision. If the specification of the system is satisfied on an
abstract semantics of the program, then it is also satisfied by the
concrete program. The converse, however, does not hold. If the
abstract system violates the specification, this may be due to
abstraction, which manifests itself in spurious counterexamples.

This observation has led to the development of a tech-
nique called counterexample-guided abstraction refinement
(CEGAR) [4], [5], [6]. The key idea of this approach is to
automatically refine the abstract semantics of a program when-
ever a spurious counterexample is encountered. The method
terminates if either the refined abstract model satisfies the

specification or a real counterexample is found. Implementing
a refinement loop which suppresses certain undesired behavior,
however, is a challenging task. This is because abstract states of
a program are classically represented using geometric concepts
such as intervals [3], polyhedral spaces [7], or affine spaces [8].
This conceptual difference between the fined-grained nature of
states — which consist of collections of bits — and high-level
geometric abstractions presents a semantic gap that has to
be bridged. Automatic abstraction, and accordingly automatic
refinement, presents a technique to overcome this gap.

A. Overview

Our model checking framework focusses on software written
for PLCs which operate in the cyclic scanning mode. In general,
the cyclic scanning mode consists of three atomic steps: (1)
reading inputs which are usually connected to sensors, (2)
performing a computation and (3) writing outputs which are
usually connected to actuators. These steps are executed at a
high frequency and the PLC can be considered as a black box
which sets output variables depending on input values (and
internal variables that last over multiple cycles, which we refer
to as global variables). As all steps are atomic, the program
might assume invalid states before the end of the cycle without
violating its specification — the output connectors are not
changed until the program has finished its computation. On
the one hand, this behavior has to be taken into account when
verifying the program, which poses a particular challenge. On
the other hand, knowledge about the structure of the system also
allows to design domain-specific verification techniques which
turn out to be more efficient than general-purpose approaches.
Recent work [9], [10] has shown this for programs written in
Instruction List (IL) [11].

B. Approach

To allow for the verification of PLC programs, we use a
direct model checking approach according to [9]. Since PLCs
programs usually have a huge number of inputs, they are
especially prone to state explosion, which we cope with using
an abstract simulation and refinement technique described in
[10]. The simulation starts with the most general abstract values
for all inputs and successively refines them at key points in
the program, taking account of the cyclic execution mode,
whenever it is required to do so. These points are guarded with
constraints at the following program locations:



∙ All conditional instructions are guarded such that all
branches are taken deterministically to maintain the atomic
execution of a cycle .

∙ At the end of the cycle, some global variables are
constrained to suppress spurious counterexamples.

∙ Variables used in atomic propositions are constrained to
decide the truth value of the formula.

To find suitable refinements, a tailored constraint solver
was used in [10] to derive constraints on the inputs that
suppress the undesired behavior. This constraint solver, however,
cannot appropriately handle constrains involving more than one
variable. Further, carefully engineering a solver that performs
optimal transformations to derive refined input constraints is
a time-consuming and error-prone task. This is even more so
since the hand-written solver is domain-dependent, and thus
needs to be adopted for each abstract domain.

C. Contribution

To efficiently handle more complex constraints and automate
the process of refinement, this paper introduces a SAT solving
technique which is used to refine the ranges of input variables.
Therefore, we interpret each variable 𝑥 of the program as
a vector of propositional (Boolean) variables ⟨𝑥𝑛−1, . . . , 𝑥0⟩
representing the bits. The most significant bits (MSB) of 𝑥 is
labelled 𝑥𝑛−1 and we have 𝑥 =

∑︀𝑛−1
𝑖=0 2𝑖 𝑥𝑖.

We then translate the semantics of a given IL program into
propositional Boolean logic, a technique that is colloquially
referred to as bit-blasting [12]. The resulting Boolean formula
describes the relations between input and output variables.
A SAT solver is then called iteratively, performing a kind of
dichotomic search, to infer upper and lower bounds for variables
subject to some constraint. This allows us to automatically
derive abstraction refinements for constraints involving multiple
variables and complex arithmetic or logical expressions.

D. Structure

The remainder of this paper is structured as follows. First,
Sect. II demonstrates the application our approach to a small
PLC example program. In Sect. III the individual steps to apply
the SAT solving process for range analysis are detailed. The
paper ends with an extensive list of related work in Sec. IV
and a concluding discussion in Sect. V.

II. WORKED EXAMPLE

We motivate our approach with the example program shown
in Fig. 1. This program has two inputs 𝑥, 𝑦 and one output
𝑧, all of type BYTE (ranging from 0 to 255). In each cycle
𝑧 is set to min(𝑥+ 𝑦, 3): The sum of 𝑥 and 𝑦 is calculated
in lines 10 and 11. If it is less than 3 (line 12), the program
conditionally jumps to label, where the sum of 𝑥 and 𝑦 is
stored in 𝑧. Otherwise, 3 is loaded in the accumulator and
stored in 𝑧 (line 13 and 14).

One way to enable the verification of such a PLC program
is to apply model checking to the state space of the program.
Here, a state refers to the configuration (a tuple representing
the values of all variables, inputs and outputs) of the PLCs

1 PROGRAM PLC_PRG
2 VAR_INPUT
3 x,
4 y: BYTE;
5 END_VAR
6 VAR_OUTPUT
7 z: BYTE;
8 END_VAR
9 LD x

10 ADD y
11 LT 3
12 JMPC label
13 LD 3
14 ST z
15 RET
16 label: LD x
17 ADD y
18 ST z
19 RET
20 END_PROGRAM

Fig. 1. Example program

after the execution of a cycle. As an example, a state of the
program in Fig. 1 could be (𝑥 = 0,𝑦 = 2, 𝑧 = 2). We can
generate a successor of a state by assigning new input values
and simulating the PLCs cycle, thus finding new outputs. If we
repeat this step for all states and all possible input values, we
generate a Kripke structure that contains all reachable states of
the program and their connecting transitions. Using a model
checker, we now can prove certain properties of this structure
using logical formulae. We could prove, for instance, that no
invalid state is reachable or that a safety state is reachable
from all states.

The limiting step here is the generation of the state space.
Even for the example program, each state has 65536 succes-
sors, due to the two input variables, which can take values
ranging from 0..255. Each additional input would exponentially
increase this number, which is the well-known state explosion
problem [13] of model-checking.

To alleviate this problem, different abstraction techniques
have been proposed. The keys idea of those abstractions is to
combine a set of states that can be treated similarly into a macro
state. Consider, for instance, the variable 𝑥 of the program.
Whenever this variable is bound to the interval [3, 255], the
conditional branch in line 13 is not taken, always resulting in
a state where 𝑧 is 3. Since addition is symmetric, this also
applies to 𝑦. Thus, we only have to generate successors where
𝑥 and 𝑦 assume the intervals [0, 0], [1, 1], [2, 2] and [3, 255],
drastically reducing the number of successors.

In the next sections we will investigate how to derive suitable
intervals automatically.

A. Refinement

In previous work [10], we describe a refinement technique
for abstract values which is based on solving constraints.
Our simulation starts with the most general abstract value
(intervals ranging over the complete domain), which then
are subsequently refined using guards at certain points in the
program.



To find suitable refinements, the program is transferred
into a static single assignment (SSA) form [14]. A constraint
on an intermediate value can then be symbolically rewritten
into a constraint on an input variable. This input variable is
refined into an abstract value representing less concrete values,
removing the problematic intermediate value at the guard after
restarting the cycle with new values.

In the example program, the conditional jump in line
13 demands a concrete value in the accumulator (the PLC
execution mode forbids non-deterministic execution during the
cycle) and would therefore be guarded by a constraint. That is,
the expression (𝑥+ 𝑦 > 3), which we can extract out of the
SSA form, must either be true or false for all concrete values
represented by the variables.

The existing constraint solver, however, has the drawback
that for technical reasons, constraints involving two variables
are resolved by splitting one variable completely into concrete
values. In the example, it would split 𝑥 into the values 0, .., 255
and only generate intervals [0, 0], [1, 1], [2, 2] and [3, 255] for
𝑦.

B. Range Analysis

In this paper, we solve such constraints involving multiple
variables by introducing a SAT solving technique to find
suitable abstract values for both variables. To achieve this,
we encode our constraints as SAT instances containing the bits
of the variables involved as propositional variables. Therefore,
the trace of instructions yielding to a guard is bit-blasted, which
is detailed in the next section. For the example program, we
would obtain the Boolean formula

𝑓(⟨𝑥7, . . . , 𝑥0, 𝑦7, . . . , 𝑦0⟩) := (𝑥+ 𝑦 < 3)

at the conditional jump, i. e., for each solution of 𝑓 , we have
(𝑥+ 𝑦 < 3).

In a naïve approach, we would now call a SAT solver to
a get solution ⟨𝑏0, . . . , 𝑏𝑚⟩ with 𝑏𝑖 ∈ {0, 1} of 𝑓 . A blocking
clause ¬𝑏 would then be added to suppress the old solution,
and iteratively calling the SAT solver on 𝑓 ∧¬𝑏 would allow us
to find all solutions of 𝑓 . Since this approach involves solving
256 SAT instances for both variables, it is obviously infeasible.

If we set 𝑥7 = 1, however, the formula 𝑓 ∧ 𝑥7 is no longer
satisfiable, because this would imply 𝑥 > 127. This allows
to infer that the lower bound of 𝑥 is ≤ 127, which the key
idea of the SAT based interval analysis: By testing whether
the formula satisfiable setting the MSB to 0 or 1, the upper
and lower bound of a variable can be confined. This step can
be repeated with the next significant bit. Since this is similar
to a binary search, the number of SAT instances to be solved
is bound by the number of bits of the variables involved.

Using this techniques for the example program, the interval
[0, 2] would be inferred for both variables, i. e. the conditional
branch can only be taken if the variables both lie in this
interval. We can now restart the cycle with, say, 𝑥 = [0, 2] and
𝑦 = [3, 255]. While in the latter case the conditional jump is
never taken, the former case need to be refined further into
the cases 𝑥 = [0, 2] and 𝑦 = [3, 255]. In Fig. 2, these further

refinements are shown as a tree. Input intervals that are still
inconsistent for the conditional jump are marked with rounded
corners. These input values are refined until the guard at the
conditional jump is fulfilled (i. e., the jump is either taken or
not taken for all values in the interval). Note also that for the
state where 𝑥 = 𝑦 = [0, 2], the SAT solving technique cannot
find a proper refinement, so 𝑥 is split into concrete values.

For all input intervals at leafs (marked with a rectangle),
successors have to be generated, creating 7 successors in total
for the example program using the new technique.

III. SAT SOLVING FOR RANGE ANALYSIS

We will now detail the inner workings of the refinement
step using SAT solving.

A. Generating a Boolean Constraint

Our CEGAR approach uses the following refinement loop,
initially described by Kurshan [15]:

1) We store our refinements on a stack. In the first step, all
variables are assigned to the most broad abstract value
(full interval) of their domain.

2) A cycle of the PLC is executed using the abstract values
in the variables.

3) If one of the above mentioned situations occurs, where
the simulation cannot proceed, the constraint solver is
used to find a new refinement for an input variable, which
is then put on the stack and step 2 is repeated.

4) The atomic propositions of the formula are evaluated. If
a truth value cannot be determined, again the constraint
solver is used to find a new refinement, which is put on
to the stack and step 2 is repeated.

5) The fresh successor state is stored in the state space.
6) The refinement on top of the stack is advanced until all

values of the domain all values of the domain have been
assigned. It is then removed. If the stack is empty all
successors are created. Otherwise repeat with step 2.

In step 3 and 4, a constraint solver is called to transform
a constraint on an intermediate value into a constraint on an
input variable. This input variable is then assigned a refined
value that avoid the inconsistent value for a decision after a
restart of the cycle. To ensure termination, each refinement
must create intervals that are proper subsets of the existing
interval. If no proper subset is found, the input variable is
split into concrete values, such that all constraints are fulfilled
trivially.

To apply SAT solving to this process, we need to express the
constraint as a Boolean formula. Since the execution trace of
the program a straight trace from the beginning of the cycle to
a guarded instruction, we can directly and automatically derive
the Boolean formula by expressing all instructions on this trace
by Boolean logic, in addition to the target constraint on the
output variables. The force of this approach is that describing
the relations semantics of a path in propositional Boolean
logic is a standard technique in software model checking.
The SAT solver thus resolves the relations between different
bits automatically so as to infer input intervals. Expressing



𝑥 = [0, 255], 𝑦 = [0, 255]

𝑥 = [0, 2], 𝑦 = [0, 255]

𝑥 = [0, 2], 𝑦 = [3, 255] 𝑥 = [0, 2], 𝑦 = [0, 2]

𝑥 = [1, 1], 𝑦 = [0, 2]

𝑥 = [1, 1], 𝑦 = [0, 1] 𝑥 = [1, 1], 𝑦 = [2, 2]

𝑥 = [0, 0], 𝑦 = [0, 2] 𝑥 = [2, 2], 𝑦 = [0, 2]

𝑥 = [2, 2], 𝑦 = [1, 2] 𝑥 = [2, 2], 𝑦 = [0, 0]

𝑥 = [3, 255], 𝑦 = [0, 255]

Fig. 2. Hierarchy of Refinements

the semantics of the instruction set, however, requires some
careful engineering. Each operation needs to be described in
Boolean logic. As an example, consider the operation ADD x,
which adds the value of variable x to the current result in the
accumulator, where it also stores the result. To bit-blast this
instruction, introduce bit-vectors 𝑥 = ⟨𝑥7, . . . ,𝑥0⟩ for x as
well as 𝑐𝑟 = ⟨𝑐𝑟7, . . . , 𝑐𝑟0⟩ and 𝑐𝑟′ = ⟨𝑐𝑟′7, . . . , 𝑐𝑟′0⟩ for the
accumulator (current result) before and after the instruction.
With additional intermediate carry-bits 𝑐, the semantics of the
operation is described propositionally as a full adder as follows:

𝜙(𝑐𝑟,𝑥, 𝑐𝑟′) =

⎧⎨⎩ (
⋀︀7

𝑖=0 𝑐𝑟
′
𝑖 ↔ 𝑐𝑟𝑖 ⊕ 𝑥𝑖 ⊕ 𝑐𝑖) ∧ ¬𝑐0∧

(
⋀︀6

𝑖=0 𝑐𝑖+1 ↔
(𝑐𝑟𝑖 ∧ 𝑥𝑖) ∨ (𝑐𝑟𝑖 ∧ 𝑐𝑖) ∨ (𝑥𝑖 ∧ 𝑐𝑖))

Similar encodings can be derived for any operation available
in IL. However, recall that SAT solvers typically expect input
formulae to be in conjunctive normal form (CNF). We thus
transform the formula into an equivalent formula in CNF [16].
Introducing fresh existentially quantified variables ensures that
the size of the resulting formula is only a linear multiple of
the size of 𝜙(𝑐𝑟,𝑥, 𝑐𝑟′). Observe that SSA conversion of
the program makes bit-blasting trivial. For example, to bit-
blast the fragment ADD x; ADD y, it is sufficient to pass
𝜙(𝑐𝑟,𝑥, 𝑐𝑟′)∧𝜙(𝑐𝑟′,𝑦, 𝑐𝑟′′) converted into CNF to the SAT
solver, where 𝑐𝑟′′ denotes the bit-vector representing the output
value of the accumulator after the second instruction.

B. Solving the Constraint using Nested Intervals

We will now detail how we use a SAT solver to infer the
upper and lower bounds a variable 𝑥 = ⟨𝑥𝑛−1, . . . , 𝑥0⟩ can
take for a given constraint 𝑓 ′. In the first step, we add the
interval to the constraint 𝑓 ′ that 𝑥 is already bound to. If 𝑥 is
bound to the interval [𝑎, 𝑏], we set

𝑓 := 𝑓 ′ ∧ (𝑥 ≥ 𝑎) ∧ (𝑥 ≤ 𝑏).

This existing interval might have arisen in a previous refinement
step or a previous execution of a cycle; thus we ensure here

that these previous refinements are taken into account.
In the second step, we infer the lower bound 𝑥𝑙 the variable

𝑥 can take. To achieve this, we test whether 𝑓 ∧ ¬𝑥𝑛−1 is
satisfiable. If so, we know that minimum 𝑥𝑙 also has a 0 at
this position. Otherwise, 𝑓 ∧ ¬𝑥𝑛−1 is unsatisfiable, so the
minimum must be greater than 2𝑛−1 and 𝑥𝑙 has a 1 at the
MSB position. This process is iterated for 𝑥𝑛−2, 𝑥𝑛−3, . . . , 𝑥0

until all bits of 𝑥𝑙 are inferred after 𝑛 steps.
In the last step, the upper bound 𝑥𝑢 of 𝑥 is found. This is

similar to the lower bounds, except we now start by testing
whether 𝑓∧𝑥𝑛−1 is satisfiable, which implies that the maximum
𝑥𝑢 has a 1 at the MSB position. Otherwise, if 𝑓 ∧ 𝑥𝑛−1 is
unsatisfiable, the maximum must be smaller than 2𝑛−1 which
implies that the MSB of 𝑥𝑢 is 0. This process can be iterated
the same way.

This algorithm describes the case of an unsigned variable
𝑥. For a signed variable, a similar algorithm could be used,
that first deduces the sign of the minimum, testing if 𝑓 has a
solution with the MSB of 𝑥 set.

C. Using the Negated Constraint

Consider the constraint 𝑔 := (𝑥+ 𝑦 ≥ 3). For 𝑔, the SAT
based constraint solver will infer the interval [0, 255] for 𝑥
and 𝑦, because the constraint is satisfiable for all values. Thus,
the constraint solver will not find a proper refinement for 𝑥
and 𝑦, and it would still be necessary to split one variable into
concrete values.

It this case, it is worthwhile to look at the negated constraint
¬𝑔: Note, that ¬𝑔 = 𝑓 (from the last section), so the negation
of 𝑔 allows us to find a refinement as seen before. Therefore,
our algorithm also takes the negated formula into account,
when no proper refinement is found.

IV. RELATED WORK

Our method is related to techniques from three fields of
research, namely abstraction and refinement in model checking,
the verification of software for PLCs, and SAT-based abstract



interpretation. The relations to previous contributions in either
field are discussed in the remainder of this section.

A. Abstract Interpretation

The methodologies used to represent an abstract program se-
mantics date back until the early days of abstract interpretation
[3]. In particular, intervals were the first numerical abstract
domain used in program analysis [3]. However, it took several
decades until it was observed that combining bit- and word-
length intervals using the reduced cardinal product allows to
accurately reason about bit-manipulating programs [17], [18],
[19]. In contrast to our work, these approaches do not apply any
refinement to abstract descriptions. Following the observation
of Regehr et al. [19] that low-level code requires accurate
transformers there has been increasing interest in automatically
synthesizing optimal abstractions [20], [21] from the concrete
semantics of a program based on SAT solving [22], [23], [24].
Our method builds upon these methods.

B. Abstraction and Refinement

The idea of refining abstract representations of states using
encountered over-approximations was formulated by Kurshan
[15]. His observation led to the development of techniques
for automated predicate abstraction [25] and the well-known
CEGAR approach [5] which we implemented in our analysis
framework. These techniques have found wide application in
model checking in different contexts. For instance, Ball et
al. [4] apply predicate abstraction and automated abstraction
refinement to C code translated into Boolean programs [26]. In
contrast, Henzinger et al. [6] propose a lazy abstraction scheme
that refines only parts of the predicates in the program. Our
refinement step for input variables can be seen as a simplified
adaptation of their method. Furthermore, the abstraction-
refinement scheme has found its way into all areas of model
checkin such as bounded model checking [27]. Compared
to our method, the main difference of existing techniques
is that they operate on a general purpose abstraction of the
program, such as Boolean programs [4], whereas our method
exploits knowledge about the underlying hardware platform. It
is also important to appreciate that backward interval analysis
using SAT solving yields optimally precise initial constraints
(w. r. t. the given constraints), thereby improving the precision of
the first constraint-based implementation of our framework [10].

C. PLC Verification

Several attempts have been made in the past to apply model
checking to software for PLCs. The first approach goes back to
Moon [28], who translated programs given as Ladder Diagrams
into the input language of SMV. This approach, however, only
supports are very limited subset of Ladder Diagrams (namely,
Boolean functions) and does not apply any abstraction, which
leads to state explosion for small problems already. Later, Canet
et al. [29] verified programs written in IL using NUSMV. The
drawback of their method is that they only support a subset
of IL and do not account for the cyclic scanning mode. A
different approach was followed by Mertke and Frey [30], who

translated IL programs into Petri nets, also not supporting the
complete IL instruction set.

Huuck [31] used CADENCE SMV to verify PLC programs
written as Sequential Function Charts (SFCs). Since parts of
the defined SFC constructs have an ambiguous semantics, they
only support a well-defined subset of the input language,
which is described in [32]. In 2007, Pavlovic et al. [33]
described an approach to translate PLC programs in Statement
List — a vendor-specific language similar to IL — into the
input language of NUSMV. Their approach, however, is not
applicable to programs with several inputs without manual
intervention. On the other hand, Süflow and Drechsler [34]
applied equivalence checking using SAT to the task of PLC
verification. Schlich et al. [9] introduced the concept of abstract
simulation for PLC verification. This approach, which to a
certain degree forms the basis of our framework, performs
abstraction without refinement, and thus, often leads to spurious
warnings. In [10], we described CEGAR for PLCs using a hand-
written backward constraint solver. The main contribution of
this paper with respect to that work is to replace the constraint
solver with an automatic decision procedure to infer interval
constraints. This approach alleviates the problem of designing
backwards transformers, which can be challenging for certain
kinds of operations.

V. CONCLUDING DISCUSSION

A. Conclusion

This paper describes an approach that combines model
checking based on counterexample-guided abstraction refine-
ment for PLCs with recent advances in automatic abstraction
for programs whose semantics is described in terms of bit-
vector relations. The key idea of this work is to integrate a
description of the concrete (relational) semantics of a program
using Boolean logic into the refinement loop. Describing the
program in a relational fashion using Boolean encodings is a
well-known technique, which is, for example, frequently used
in bounded model checking [35]. The main contribution of our
work is to pair this technique with successive refinement of
interval abstractions based on SAT solving. The approach will
thus directly profit from future advances in SAT solvers.

B. Future Work

Although we have illustrated the approach using SAT-based
interval abstraction, the key steps of the algorithm — that is, en-
coding the concrete semantics of a program using propositional
Boolean logic and deriving refined abstractions on the fly — are
independent of the choice of abstract domain. It will therefore
be interesting to evaluate the effectiveness and performance on
weakly-relational domains such as octagons [36] by integrating
the abstraction procedure recently developed by Brauer and
King [24]. Their method rests on encodings, which are similar
to those described in this work.

Orthogonal to choice of abstract domain is the question
of integrating the reuse of refined constraints, which have
been inferred for one cycle of the PLC, in the verification of
another cycle. We believe that caching of such refinements has



the potential to significantly improve the performance of the
described approach.

ACKNOWLEDGMENT

This work was supported by the DFG Cluster of Excellence
on Ultra-high Speed Information and Communication (UMIC),
German Research Foundation grant DFG EXC 89. Further, the
work of Sebastian Biallas was supported by the DFG. The work
of Jörg Brauer was, in part, supported by the DFG Research
Training Group 1298 Algorithmic Synthesis of Reactive and
Discrete-Continuous Systems (AlgoSyn).

REFERENCES

[1] International Electrotechnical Commission, IEC 61508: Functional
Safety of Electrical, Electronic and Programmable Electronic Safety-
Related Systems. Geneva, Switzerland: International Electrotechnical
Commission, 1998.

[2] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[3] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM, 1977, pp. 238–252.

[4] T. Ball, B. Cook, S. Das, and S. K. Rajamani, “Refining approximations
in software predicate abstraction,” in TACAS, ser. LNCS, vol. 2988.
Springer, 2004, pp. 388–403.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in CAV, ser. LNCS, vol. 1855. Springer,
2000, pp. 154–169.

[6] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,”
in POPL. ACM Press, 2002, pp. 58–70.

[7] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Principles of Programming Languages
(POPL 78), Tucson, USA. ACM, 1978, pp. 84–97.

[8] M. Karr, “Affine relationships among variables of a program,” Acta
Informatica, vol. 6, pp. 133–151, 1976.

[9] B. Schlich, J. Brauer, J. Wernerus, and S. Kowalewski, “Direct model
checking of PLC programs in IL,” in Dependable Control of Discrete
Systems (DCDS’09), Bari, Italy, 2009.

[10] S. Biallas, J. Brauer, and S. Kowalewski, “Counterexample-guided
abstraction refinement for PLCs,” in 5th International Workshop on
Systems Software Verification (SSV 2010), Vancouver, Canada. Berkeley,
CA, USA: USENIX Association, 2010, pp. 2–2.

[11] International Electrotechnical Commission, IEC 61131-3: Programmable
Controllers — Part 3 Programming languages. Geneva, Switzerland:
International Electrotechnical Commission, 1993.

[12] D. Kroening and O. Strichman, Decision Procedures. Springer, 2008.
[13] E. M. Clarke, The Birth of Model Checking. Berlin, Heidelberg: Springer-

Verlag, 2008.
[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,

“Effciently computing static single assignment form and the control
dependence graph,” ACM Trans. Program. Lang. Syst., pp. 451–590,
1991.

[15] R. P. Kurshan, Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton, NJ, USA: Princeton University
Press, 1994.

[16] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” Journal of Symbolic Computation, vol. 2, no. 3, pp. 293–304,
September 1986.

[17] J. Brauer, T. Noll, and B. Schlich, “Interval analysis of microcontroller
code using abstract interpretation of hardware and software,” in SCOPES
2010. ACM, 2010, to appear.

[18] J. Regehr and U. Duongsaa, “Deriving abstract transfer functions for
analyzing embedded software,” in LCTES. ACM, 2006, pp. 34–43.

[19] J. Regehr and A. Reid, “HOIST: A system for automatically deriving
static analyzers for embedded systems,” ACM SIGOPS Operating Systems
Review, vol. 38, no. 5, pp. 133–143, 2004.

[20] D. Monniaux, “Automatic Modular Abstractions for Linear Constraints,”
in POPL. ACM Press, 2009, pp. 140–151.

[21] T. Reps, M. Sagiv, and G. Yorsh, “Symbolic implementation of the best
transformer,” in Verification, Model Checking, and Abstract Interpretation
(VMCAI 2004), Venice, Italy, ser. LNCS, vol. 2937. Springer, 2004, pp.
252–266.

[22] J. Brauer and A. King, “Automatic abstraction for intervals using Boolean
formulae,” in SAS, ser. LNCS, vol. 6337. Springer, 2010, pp. 167–183.

[23] E. Barrett and A. King, “Range and set abstraction using SAT,” Electronic
Notes in Theoretical Computer Science, vol. 267, no. 1, pp. 17–27, 2010.

[24] J. Brauer and A. King, “Transfer function synthesis without quantifier
eimination,” in ESOP, ser. LNCS. Springer, 2011, to appear.

[25] R. Giacobazzi and F. Scozzari, “Intuitionistic implication in abstract
interpretation,” in PLILP, ser. LNCS, vol. 1292. Springer, 1997, pp.
175–189.

[26] T. Ball and S. K. Rajamani, “Bebop: A symbolic model checker for
boolean programs,” in SPIN, ser. LNCS, vol. 1885. Springer, 2000, pp.
113–130.

[27] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 118–149, 2003.

[28] I. Moon, “Modeling programmable logic controllers for logic verification,”
IEEE Control Systems Magazine, vol. 14, no. 2, pp. 53–59, 1994.

[29] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen, “Towards
the automatic verification of PLC programs written in instruction list,” in
2000 IEEE International Conference on Systems, Man, and Cybernetics,
Nashville, vol. 4. IEEE Computer Society Press, 2000, pp. 2449–2454.

[30] T. Mertke and G. Frey, “Formal verification of PLC-programs generated
from signal interpreted petri nets,” in 2001 IEEE International Conference
on Systems, Man, and Cybernetics, vol. 4. IEEE Computer Society
Press, 2001, pp. 2700–2705.

[31] R. Huuck, “Software verification for programmable logic controllers,”
Dissertation, University of Kiel, Germany, April 2003.

[32] N. Bauer and R. Huuck, “A parameterized semantics for sequential
function charts,” in Semantic Foundations Engineering Design Languages
(SFEDL 2002), 2002, pp. 69–83.

[33] O. Pavlovic, R. Pinger, and M. Kollmann, “Automated formal verification
of PLC programms written in IL,” in VERIFY, ser. Workshop Proce., no.
259. CEUR-WS.org, 2007, pp. 152–163.

[34] A. Sülflow and R. Drechsler, “Verification of PLC programs using formal
proof techniques,” in FORMS/FORMAT. L’Harmattan, 2008, pp. 43–50.

[35] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), Barcelona, Spain, ser. LNCS, vol. 2988.
Springer, 2004, pp. 168–176.

[36] A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, pp. 31–100, 2006.


