
A System for Synthesizing Abstraction-Enabled
Simulators for Binary Code Verification

Dominique Gückel, Jörg Brauer, and Stefan Kowalewski
Embedded Software Laboratory, RWTH Aachen University

Ahornstraße 55, 52074 Aachen, Germany
Email: {lastname}@embedded.rwth-aachen.de

Abstract—Formal verification of embedded software is crucial
in safety-critical applications, ideally requiring as little human
intervention as possible. Binary code model checking based on
hardware simulators already comes close to this goal, although
with high initial effort for developing a simulator of the respective
target platform. In the embedded systems domain with its
varieties of different architectures in use, this can severely restrict
the applicability of this approach. To remedy this drawback,
we describe a system for automatically synthesizing simulators,
which are suited for model checking in that they support auto-
matic abstraction. We evaluate the practicality of this approach
by synthesizing simulators for the Atmel ATmega16 and Intel
MCS-51 microcontrollers.

I. INTRODUCTION

The application of formal methods to verify – or at least
increase confidence in – the correctness of safety-critical
embedded systems is becoming increasingly important. A wide
variety of formal methods, including but not limited to abstract
interpretation [1], concolic testing [2], model checking [3], [4],
and theorem proving [5], have successfully been applied to
embedded systems on different levels of abstraction, from the
verification of conceptual models down to the level of binary
code.

A. Focus

The focus of our work is model checking of binary code,
which has several distinct advantages (and some disadvan-
tages) compared to the verification of high-level models.
Firstly, the approach is tied to a specific hardware model,
which is particularly acute when working with microcon-
trollers, where errors are often introduced through misuse of
certain hardware features, for instance, messing with interrupt-
priority levels. The effects of such misuse cannot be evaluated
properly without a detailed model of the underlying hardware
platform. Secondly, it is capable of finding bugs that are
not visible in source code due to a lack of knowledge how
some high-level language constructs are actually compiled.
Further, in binary code, each instruction has a well-defined
semantics, which contrasts with the many ambiguities present
in the C programming language, to name only one example.
Thirdly, and maybe most importantly, formal methods based
on binary code do not have to rely on correctness of compilers
and linkers, a problem that is particularly acute in embedded
systems software [6].

On the other hand, however, there are two (correlated)
drawbacks. Since the verification process is hardware-specific,
and the hardware configurations have a strong influence on the
behavior of the microcontroller, the state-explosion problem
tends to be worse compared to model checking at higher
degrees of abstraction. Further, hardware simulators are re-
quired for building the state spaces of the programs, and these
have to be adapted for every target platform. Moreover, due
to state explosion, existing simulators as delivered by hard-
ware vendors cannot be reused, since they fail for verifying
even the smallest programs. Instead, applicable simulators in
the context of model checking need to automatically apply
abstraction, ideally requiring as few human intervention as
possible. On the other hand, abstraction techniques need to
employ knowledge about the hardware platform in order to be
effective. Hence, there is usually interplay with the degree of
automation and effectiveness.

In the past, such simulators have been designed and written
by hand, requiring at least 6 man-months from our experi-
ences. The effectively required time frame, however, strongly
depends on the complexity of the target microcontroller, and
the intricacy of the integrated abstraction techniques.

B. Approach

To remedy this significant workload required for supporting
a new microcontroller, we propose to automatically synthesize
simulators for model checking from hardware descriptions.
The target platform – including memory layout, instruction
set, and peripherals – is specified in an architecture description
language (ADL), which serves as the input for a synthesis
system that automatically generates a compilable simulator.
Such specifications of the target platform can easily be derived
from the documentation delivered by hardware vendors, for
instance, from the instruction-set specification. A synthesized
simulator is then automatically integrated into [MC]SQUARE1,
a binary code verification platform that serves as the basis
for our efforts. Further, additional tools such as disassemblers
are automatically derived. Since the state-explosion problem
is particularly severe for binary code model checking, the
synthesis system (semi-) automatically integrates automatic
abstractions, and no further human intervention is needed.

1http://mcsquare.embedded.rwth-aachen.de

C. Contributions

In this paper, we make the following contributions:
• We describe an ADL called State-space Generator De-

scription Language (SGDL), which is an extension of the
language ISILDUR used in the AVRORA project2.

• We detail the synthesis system that is needed to translate
specifications in SGDL into executable simulators.

• To tackle the state-explosion problem, we detail the
integration of automatic abstraction techniques at the
example of the so-called lazy stack evaluation, which
exploits the way the stack is used in binary programs. We
also present the integration of another abstraction, called
path reduction, which reduces paths in the state space to
single transitions in case they satisfy certain conditions.

• We evaluate the effectiveness of the approach by compar-
ing the effort required for hand-written and synthesized
simulators as well as the sizes of state spaces generated
by both types of simulators.

• We show the flexibility of the system by focussing on the
synthesis of simulators for programs targeting the Atmel
ATmega16 and the Intel MCS-51 microcontrollers.

II. RELATED WORK

The description of hardware, especially of processor-based
architectures, is important in a wide variety of applications.
VHDL and Verilog are the most prominent general-purpose
hardware description languages, in that they are extremely
flexible and can be synthesized to actual hardware. However,
in providing great flexibility they also provide little restriction
on the design, and thus, little support for solving specific tasks
such as describing processors and microcontrollers. For this
purpose, more specialized architecture description languages
(ADLs) have been developed. These languages and associated
tool chains are especially used in design space exploration,
which aims at creating application-specific controllers and
digital signal processors. Examples are EXPRESSION [7],
MADL [8], and LISA / LISAtek [9]. Developers can create
descriptions of their hardware in these languages, and the
tool chain automatically generates software tools such as
assemblers, C compilers, cycle- or phase-accurate simulators,
profilers, etc., for devices that are still under construction.

However, none of these languages is suitable for retargeting
a software model checker such as [MC]SQUARE, which does
not aim at verifying any hardware, but software intended to run
on the hardware. The problem with VHDL is that it covers far
too many details about the hardware, which have to be stored
in each state in the state space. Considering that a state space
for a typical program consists of millions of states, each state
must not exceed more than a few kB of size. This is the case
for instruction-accurate simulation, but not for cycle-accurate
or even phase-accurate simulation. Hence, ADLs developed
so far are also infeasible for this purpose, as these kinds of
hardware simulation are exactly what they were designed for.

2http://compilers.cs.ucla.edu/avrora/

Apart from general-purpose model checkers such as SMV
/ NuSMV [10], which require developers to create their own
model, there are several model checkers which are suitable
for verifying software. These tools interpret instructions in
order to create the system model. However, most of these aim
at high-level languages (HLL) such as C. When compared
to assembly level model checkers such as [MC]SQUARE, this
certainly has the advantage that state spaces tend to be smaller.
There are disadvantages, though, that severely limit the use
of HLL approaches, especially when verifying embedded
software. A detailed discussion of this issue is given in [11].
An example of a HLL model checker is STEAM [12], which
aims at C programs.

III. [MC]SQUARE

[MC]SQUARE is an explicit-state model checker for mi-
crocontroller binary code, which operates on disassembled
binary programs. It currently supports the Atmel ATmega16
and ATmega128, Infineon XC167, Intel MCS-51, and Renesas
R8C\23 microcontrollers. Additionally, it supports programs
for Programmable Logic Controllers (PLCs) written in In-
struction List (IL) and abstract state machines. Formulas are
given in Computation Tree Logic (CTL) and can contain
propositions about general-purpose registers, I/O registers, and
the main memory.

Figure 1 shows the model checking process applied in
[MC]SQUARE, which is the same for all supported hardware
platforms. The core component is a simulator, which is respon-
sible for building successor states by means of interpretation.
A simulator is needed for each supported hardware platform.
However, these are not regular simulators as typically pro-
vided by hardware vendors, but special ones that can handle
nondeterminism and support abstraction. Nondeterminism is
introduced into the system using peripherals such as timers,
since [MC]SQUARE abstracts from time and resorts to nonde-
terminism whenever time is involved, as well as interrupt han-
dlers. Further, several abstraction techniques are implemented
in these simulators to reduce state spaces, whilst at the same
time generating over-approximations of the behavior shown by
the real hardware.

In the model checking process, the program file and optional
files such as C and debug files are loaded by the program
parser first, and then, the CTL formula is processed. The op-
tional files are used to map information between the assembly
and the C code when model checking binary code. Thus, one
can use variables from the C code in the specification, which
are then automatically mapped to the corresponding memory
locations. After loading the files and the formula, the static
analyzer conducts its analyses and annotates the program.
These annotations serve as the basis for several abstraction
techniques used in the simulator to reduce state spaces.

The actual model checking works as follows. First, the
model checker obtains the initial state from the state space and
checks certain subformulas (because it uses on-the-fly model
checking). Then, depending on the formula and the result, it
requests successors of the current state from the state space.

[mc]squareProgram
file

Optional
files

CTL
formula

Program
parser

CTL
parser

Static
analyzer

Counter-
example
generator

Model checker

Simulator

State
space

Figure 1. Model checking process in [MC]SQUARE

If the successors of the current state are not created yet, the
state space uses the simulator to create them on-the-fly. The
generation of successor states by the simulator is performed
using the following steps:

1) Load state into model of hardware
2) Determine assignments needed for resolving nondeter-

minism
3) For each assignment

a) If assignment indicates occurrence of an active
interrupt, simulate effect of interrupt. Else simulate
effect of next instruction.

b) Evaluate truth values of atomic propositions
4) Return resulting states
Depending on the underlying hardware platform, different

parts of a state of the hardware can be nondeterministic. In
models of microcontrollers, certain I/O registers and external
devices such as timers and AD-converters are modeled as
nondeterministic. For simulating the effect of instructions,
the nondeterminism has to be resolved. Therefore, it is first
checked which parts of the state are accessed by the next
instruction, and then, these parts are instantiated by assigning
all possible value combinations to them. For example, if
an instruction reads input from an 8-bit I/O port, which is
modeled using nondeterminism, 256 different successor states
are created: one state for each possible assignment.

For each assignment, the effect of the next instruction is
simulated and the atomic propositions are evaluated on the re-
sulting state. The evaluation of atomic proposition takes place
in the simulators, and hence, the model checking algorithm
itself is independent of the underlying hardware platform.
When model checking is finished, depending on the formula
and the result, a counterexample or a witness is generated,
which is displayed in assembly code, in C code, in the control
flow graph of the program, and as a state-space graph. More
details on the fundamentals of [MC]SQUARE are given by
Schlich [11].

IV. SGDL AND THE SIMULATOR SYNTHESIS SYSTEM

None of the ADLs presented so far features support for
nondeterminism, which is necessary to preserve an over-
approximation of the behavior of the physical device. There-
fore, we have developed a new ADL and a synthesis system

Figure 2. A memory with two aliases

suitable for creating simulators for use in model checking.
Our new language, which is an extension of the instruction
set description language used in the AVRora project [13], is
called State space Generator Description Language (SGDL).
A first introduction into SGDL is given in [14].

A. Description of Simulators Using SGDL

The most important characteristics of an architecture, from
the stance of instruction-accurate simulation, are the size and
structure of memories, the instruction set, and the interrupt
system. This section illustrates how these are modeled in
SGDL. Other characteristics, which are also described in
SGDL, but not detailed here, involve the generation of glue
code, such as loading the program from the binary output
generated by the developer’s compiler.

1) Memory Description: All instructions operate on a mem-
ory model of the microcontroller. Describing memories in
SGDL consists of two steps, memory declaration and alias
declaration.

Memory declaration is equivalent to an array declaration
in an imperative programming language. It creates a new
identifier and allocates a specified amount of physical memory
to store the simulated memory. However, in SGDL memory
is never accessed directly using the memory array identifier.
The reason for this design decision is that several platforms
provide more than one way of addressing a memory lo-
cation. An example is shown in Figure 2. This shows the
memory layout of the SRAM address space of an Atmel
ATmega16 microcontroller. The 32 general purpose registers

are mapped into the main address space, followed by special
function registers (not shown in the figure), and eventually,
starting at address 96, the actual SRAM. Instructions accessing
SRAM addresses 0 to 31 do not read from or write into
the SRAM, but instead access the general purpose registers.
Vice versa, instructions only dealing with registers do not
only affect registers, but also the lower 32 SRAM addresses.
For modeling such dependencies, we decided to introduce
aliases to our language. Aliases separate memory access from
memory declaration, and are semantically equivalent to typed
pointers in imperative programming languages. The example
in Figure 2 contains two aliases: regs is an alias for the lower
SRAM addresses, and sram is an alias for the entire address
space. Similarly, we can declare aliases for single bits inside
addresses, for instance to provide easy access to frequently
used flags such as the carry flag or the global interrupt enable
flag, both of which are located in the status register.

Below is the SGDL representation of the memory mapping
depicted in Figure 2:

memory a r r a y data mem = {
s i z e = 1120
} ;

memory a l i a s sram : memory = {
b l o c k s i z e = 1 , b l o c k c o u n t = 1120 ,
u n d e r l y i n g = ” data mem ” ,
u from = 0 , u to = 1119 ,
op = ” u b y t e ” ,
d e s c r i p t i o n = ”SRAM”
} ;

memory a l i a s r e g s : memory = {
b l o c k s i z e = 1 , b l o c k c o u n t = 32 ,
u n d e r l y i n g = ” data mem ” ,
u from = 0 , u to = 31 ,
op = ” u b y t e ” ,
d e s c r i p t i o n = ” G e n e r a l Pu rpose Regs ”
} ;

In this example, both aliases access data mem in a bytewise
fashion (block size=1), but starting from / ending at different
locations (u from, u to). Both interpret the content of each
accessed memory cell as an unsigned byte value (op=ubyte).
The value of the optional attribute description is used for
creating a panel on the GUI for inspecting memory contents,
which is used in counterexamples and for manual debugging.

2) Instruction set description: In the following example we
illustrate the general principle of describing an instruction:

i n s t r u c t i o n ”ADC” {
e n c o d i n g = GPRGPR where {

opcode = 0 b000111 ,
r1 = rd ,
r2 = r r

} ;
o p e r a n d t y p e s = { rd : GPR, r r : GPR} ;

c y c l e s = 1 ;
e x e c u t e = {

$ r e g s (rd) =
p e r f o r m A d d i t i o n ($ r e g s (rd) ,

$ r e g s (r r) , $C) ;
} ;

} ;

The instruction is called ADC and expects two operands
of the (user-defined) types GPR. The binary encoding of
this instruction is defined in the encoding section of the
instruction element. SGDL allows developers to define
patterns of frequently occurring encodings. This is useful if
the instruction set can be grouped by adressing modes. In the
above example, we use one pattern, GPRGPR. It is defined as
follows:

f o r m a t GPRGPR = { opcode [5 : 0] ,
r2 [4 : 4] , r1 [4 : 0] , r2 [3 : 0] } ;

This template is reused in all instructions using exactly two
general purpose registers (GPR) as parameters. It takes care of
the fact that in the instruction set of the real hardware the value
indicating the second register, r2, is encoded as a so-called
split field. That is, all instructions using this encoding contain
a bit-pattern in which the first bit of register r2 is encoded
first, then follow all 5 bits encoding register r1. Finally, the
last 4 bits of register r2 are listed.

The instruction description also contains an associated se-
mantics. The semantics describes the effect the instruction has
on the simulated microcontroller when executed. It is usually
described in detail in the manual or instruction set summary
of the microcontroller. In the above example, the operation
associated with the ADC instruction is an addition, adding two
registers and a carry flag. The effect will be r1← r1+r2+c,
where c is the status of the carry flag in the status register.
To avoid redundancies, SGDL allows developers to define own
methods, a feature which is used here: the actual calculation of
r1+r2+c is performed in the function performAddition.
Hence, all variants of an add operation, such as add without
carry, add with carry, add register and immediate, can all rely
on the same implementation of performAddition.

3) Nondeterminism in instructions and interrupts: For
model checking, it is essential that the state space generator
creates an over-approximation of possible system behavior. In
order to ensure this, the environment and also certain internal
components have to be considered as nondeterministic, as
their actual value at runtime cannot be predicted. In con-
sequence, simulator developers must be able to specify for
which components this is the case. The language elements we
have introduced so far cover the same aspects as other ADLs
do. Next, we introduce the elements necessary for defining
nondeterministic behavior. Three elements are necessary, as
described below.

To mark a location as nondeterministic, we prefix its name
with a # and write a value to it. This special-purpose value is
stored in a data structure called a nondeterminism mask (nd

mask). The value has to be 0 for all those bits of the location
that are to remain deterministic, and 1 for all bits that are to
become nondeterministic. This feature can be used to model
dependencies between memory locations: if one register holds
a certain value (for instance, port configuration registers or
timer/counter activation), then another register (the I/O port
or timer/counter register) will become nondeterministic. There
is such a dependency on the ATmega16 between the data
direction registers (DDRA to DDRD for ports A-D) and the
port input registers (PINA to PIND). A bit set to 0 in DDRx
implies that the pin with that number on port x is an input,
i.e., in the SGDL model, its nd mask has to be set to 1. In
the C-like assignment syntax of SGDL, this can be achieved
in the following way:

#PINA = ˜$DDRA;

This fetches the value of register DDRA (values are accessed
by $), complements it, and writes it into the nd mask of
register PINA (# access). Subsequent reads from PINA will
then trigger an instantiation.

The second language element for dealing with nondetermin-
ism is part of an instruction declaration. It is a signal for the
simulator synthesizer to add code for instantiating the named
locations before the instruction can be executed:

n d r ea d = { $ i o r e g s (imm) } ;

When the instruction accesses the memory alias ioregs at
address imm to fetch its value, instantiation has to take place.
This means that all nondeterministic bits in that location have
to be assigned a deterministic value, which results in 2n

distinct values if n bits are marked as nondeterministic. In
future implementations, we will use a symbolic technique for
this, which will avoid the instantiation in some cases (see Sect.
VI-C).

Finally, SGDL provides a detailed description mechanism
for interrupts. In principle, interrupts are nondeterministic
events that interfere with instruction execution. Either the event
associated with an interrupt occurs, then it is possible (but
not strictly necessary, as the interrupt might be deactivated)
that simulation has to continue by entering the interrupt han-
dler. Otherwise, the program continues at its current location
(typically the main program). In order to preserve an over-
approximation of program behavior, the SGDL description
has to contain the following information about each of the
interrupts of the platform:

1) A condition for checking whether the interrupt is active
and can occur.

2) Code that will be executed when, during simulation, it
is decided that the event leading to the interrupt has just
occurred. Usually, on the real hardware, in such cases,
some flag is automatically set by the hardware, even
when the interrupt associated with it is not activated.

3) A condition for verifying that the event has occurred,
used when deciding whether any interrupt handler has
to be entered, and which, if any.

4) Code for actually entering the interrupt handler. The
code here has to model the hardware behavior, such
as looking up the active interrupt vector table, and
modifying the program counter accordingly.

5) Code returning a priority. By considering the content
of the memories when computing the return value, it
is possible to correctly model architectures with config-
urable interrupt priorities (such as the MCS-51, where
each interrupt can be assigned to one of two priority
levels).

It is worth mentioning that each of these code sections is
required. Combining any of them would lead to spurious
counterexamples, which could not occur on the real hardware.

B. The Synthesis Framework

The synthesis framework consists of three major compo-
nents: (1) input language parser, (2) intermediate representa-
tion and (3) factories. We will now describe each of these
components in detail.

The input language parser forms the interface between
the SGDL code created by the developers and the internal
representation of the platform architecture, which we refer
to as intermediate representation. It is based on the parser
provided by the AVRora project, though we added several
extensions of our own. The task of the parser is to read
the input, check for syntax errors, and translate it into the
intermediate representation.

Intermediate representation means the memory representa-
tion of the information present in the SGDL input file. It forms
the basis of the synthesis phase, that is, it fulfills the same task
as the abstract syntax tree (AST) in a compiler. Similar to a
compiler, we perform several operations on the intermediate
representation. The most important of these operations ensure
that there are no semantic errors in the representation. For
instance, instruction encoding must be unambiguous. If there
are two different instructions with the same binary encoding,
then we could not decide which instruction to create when we
encounter that pattern in the instruction stream.

Factories are the backend of the synthesis framework.
They process the intermediate representation and create the
platform simulator as output. Currently, our synthesis frame-
work generates Java classes because [MC]SQUARE itself is
implemented in Java. Hence, the generated simulator requires
a Java compiler, and it is not possible to generate the simulator
on the fly without restarting [MC]SQUARE. The advantage
of this approach is that the simulator itself will always be
compiled and optimized by the compiler before it is executed,
thus increasing performance.

C. The Synthesized Simulator

After the synthesis process has terminated, the gener-
ated simulator is available in the package structure of the
[MC]SQUARE model checker. The synthesis tool automatically
extends the simulator by a loader for the ELF format and a
loader for the HEX file format. It also reconfigures options
and GUI of the model checker such that the new simulator

is immediately available for model checking and manual
simulation.

V. TOOL-BASED IMPLEMENTATION OF SIMULATORS

This section illustrates the results in describing different
microcontroller platforms with SGDL, and model checking
programs using the simulators synthesized from these descrip-
tions.

A. Case Study: Atmel ATmega16

The ATmega16 is an 8 bit microcontroller from Atmel’s
AVR family of microcontrollers. The device has a RISC core,
131 instructions, 3 separate address spaces for program and
data (i.e., it is a Harvard architecture), and makes heavy use
of memory mapping (register bank and I/O mapped into the
main address space for the SRAM). It has 21 different interrupt
sources, but no priority for interrupts except their numbering.

1) Modeling the ATmega16 in SGDL: Details on the case
study concerning the construction of an SGDL description
of the ATmega16 can be found in [14]. For the sake of
completeness and comparability to the newly created MCS-51
SGDL description, we only briefly resume the most important
characteristics here.

The description for the ATmega16 was not created from
scratch, but resulted from an extension of an existing AVR
instruction set description that was part of the AVRora project.
It served as a testbed during the development of the synthesis
system. For this reason, the development time for the AT-
mega16 simulator has not been accurately measured. Also, it
influenced some design decisions that turned out as being too
hardware-specific with regard to the AVR when the MCS-51
simulator was created.

A total of 2150 lines of code (LOC) (in SGDL) was
necessary to describe the ATmega16. From this description,
the synthesizer generated the executable simulator consisting
of 18350 LOC (in Java).

The generated simulator also includes a set of JUnit test case
stubs for all instructions and methods declared in the SGDL
file. These tests check whether the disassembler correctly
decodes instructions, and whether it is possible to execute the
instructions. The binary instruction encoding patterns to be
tested are not generated automatically, as this would violate
the principle from testing theory that a program may never
be tested against itself. Hence, the developer has to fill in the
patterns manually into the stubs (empty constants with names
relating to the instruction they represent are generated for this
purpose), but the testing is then conducted fully automatic
by JUnit. Using these tests, we discovered two errors in the
original AVRora instruction set description for the AVR family,
which were based on missing bits in encodings for some
instructions.

B. Case Study: Intel MCS-51

The MCS-51 is a family of microcontrollers from Intel. Its
best-known member is the 8051, which was already presented
in 1980, but is still widespread today. Just like the AVRs, it

is an 8 bit microcontroller, but it only features 128 bytes of
RAM (plus an optional another 128 bytes in variants like the
8052). The address space, however, covers at least 256 bytes,
wherein the upper 128 bytes contain mappings of special
function registers and some bits. The MCS-51 possesses a
specialty, which are addressable single bits, and powerful
bit-manipulating instructions. For this reason, there is very
little need for specialized flags on this architecture, as the
developer can easily realize custom flags in software. As to
instructions, the family is based on a CISC architecture. The
number of instructions reads 111, but, considering duplicate
instructions due to different adressing modes, there actually
are 256 different instructions.

1) Modeling the MCS-51 in SGDL: The MCS-51 SGDL
description was not based on any previous work. Hence,
we could accurately measure the effort for implementing a
simulator using SGDL when implementing it. The effort was
considerably lower than when manually implementing a sim-
ulator. [MC]SQUARE already contains a handcrafted simulator
for this platform, which took the usual 6 months span. Using
SGDL, on the contrary, the simulator was already operational
(memories and instruction set description) after 23 hours.
Programs could be loaded, instructions could be disassembled
and executed, and their effects were visible on the GUI. The
current status of the work on this simulator, after a total
effort of only 40 hours, is that model checking is possible (all
named registers of the device can be used as atomics in CTL
formulas), debugging on the GUI is possible, and the interrupt
system has been implemented. The effort of 40 hours already
includes the time required for adapting the synthesis system
wherever it was designed too AVR-specific, and for optimizing
the performance in bottlenecks that have been discovered. As
future simulators will benefit from these improvements as well,
we suspect that the effort for implementing further platforms
could be even lower.

As AVR and MCS-51 are fairly different (RISC vs. CISC ar-
chitecture, sizes of memories), the successful implementation
of the MCS-51 also proves that the SGDL approach is general
enough to allow implementation of arbitrary platforms with
acceptable effort.

VI. ABSTRACTION

Abstraction refers to all techniques used for reducing the
amount of infomation to be stored. Any abstraction, or ab-
straction technique, has to pursue two goals: first, reduce
the number of states to be stored by dropping not required
information, and second, do not sacrifice too much informa-
tion. Dropping more information than is theoretically allowed
might cause the model checker to miss errors, or might, in
the better case, simply lead to spurious counterexamples (i.e.,
counterexamples that could never occur on the real system).
Hence, special care is needed when creating new abstractions
for simulators.

When applied carefully, abstractions can greatly assist the
verifiction process. Systems containing billions of states, such
that cannot be handled due to lack of memory, or taking

Figure 3. Stack management (A) without and (B) with Lazy Stack Evaluation

weeks to verify, can be reduced to systems of a few thousands
states, which can be handled even by an average desktop
computer within a matter of seconds. The existing handcrafted
simulators have been equipped with such abstractions, each for
itself as the abstractions themselves are typically hardware-
specific.

A. Lazy Stack Evaluation

Lazy stack evaluation (LSE) is a very powerful abstraction
that preserves the expressiveness of the abstracted system.
In the handcrafted simulators, it has proven itself to be an
invaluable abstraction, without which most programs would
not be manageable for the model checker, and which is
therefore active by default.

The idea behind lazy stack evaluation is shown in Figure 3.
It is based on the premise that a program generated by a
compiler will only access the stack of the hardware via push
and pop operations, but never read or write directly from
it. Whenever an element is taken from the stack by a pop
operation, it will never be read again. So the stack pointer
register (or registers, in case the platform provides more than
one), which always points to the top of the stack, also points
to the last element that actually needs to be stored. This
observation is exploited by LSE. By resetting the elements
beyond the top to a common reset value, it allows states that
only differ in those irrelevant memory locations to be merged.
In the example in Figure 3, this is depicted for a previous
value of the stack pointer (SP) of 5. By 3 pop operations, the
value of SP has been reduced to 2, allowing for the values
X3, X4 and X5 to be discarded.

It is possible to guarantee a valid over-approximation even
in the rare case the program should read a value beyond the
location pointed to by SP. For this, locations are not only
reset on pop, but also marked as nondeterministic. Vice versa,
pushing a (deterministic) value on the stack will render a
location deterministic again. Thus, should the program ever
read beyond SP, instantiation will take place, generating all
possible values for the location, including the original one
before the reset.

Obviously, LSE can have little impact if the program
scarcely modifies the stack pointer. Table I illustrates this
for the test program called Experimental Plant (formula: AG
TT, i.e. build full state space), which contains only 2 active

Table I
MODEL CHECKING RESULT COMPARISON FOR [MC]SQUARE ATMEGA16

SIMULATORS, TEST PROGRAM EXPERIMENTAL PLANT

Property Synthesized Synth. with LSE Handcrafted
states stored 105,445 75,145 130,524
states created 115,846 78,476 135,949

transitions created 115,846 78,475 135,948
time 5.5 s 4.5 s 4.2 s

Table II
MODEL CHECKING RESULT COMPARISON FOR [MC]SQUARE ATMEGA16

SIMULATORS, TEST PROGRAM WINDOW LIFT

Property Synthesized Synth. with LSE Handcrafted
states stored 426,239,648 3,763,032 129,030
states created 749,355,722 5,219,519 205,223

transitions created 749,355,721 5,219,518 138,982
time 5h 10 min 2 min 37 s 9.7 s

interrupts and no function calls except an initialization method,
which is called only once. The opposite case is given when
there are many function calls or even interrupts, which can
occur in any ordering, and thus leave the stack in many
different combinations of remaining return values. Under such
circumstances, LSE can reduce up to 98% of the state space,
as is shown in Table II.

Table II is a re-run of test case III from the case study in
[14], illustrating the impact of the newly added support for
LSE in synthetic simulators. The program used for these runs
contains three active interrupts and a main program, resulting
in 4 pseudo-parallel threads manipulating the stack. Compared
to [14], the values for the column labeled Synthesized in-
creased due to a necessary change in the modeling of interrupts
(e.g., states stored increased from 413 million to 426 million).

Adding the support for LSE requires only the following
modifications to the SGDL description:

• in pop:
– store the value of the stack, which is about to be re-

turned, in a temporary variable (instead of returning
it immediately)

– reset the value by writing a 0 to the SRAM location
pointed at by SP

– set all bits of the location as nondeterministic by
writing 0x255 to its nd mask

– return the value
• in push: reset the nd mask of the location where the new

element is placed by writing a 0 to it, thus marking it as
deterministic

Thus, the overall effort amounts to three new lines of code
(reset value, set nd mask, and reset nd mask). It is possible to
automate this by providing a generic version of push and pop
to the simulator developer. However, the generic methods need
to consider platform peculiarities such as endianness, word
size, the direction in which the stack grows, whether SP points
at the last occupied or the next free position, and the possibility
of multiple stacks (as present for instance in the Renesas R8C).
Hence, they would not necessarily relieve the developer due

to their own complex handling.
The most important result from adding support for LSE in

synthetic simulators is, however, not just the vast reduction of
state space size caused by this specific abstraction technique.
Instead, we consider the fact that also when using the synthesis
tool for implementing simulators, it is possible to add ab-
straction. Hence, it is possible to consider further abstractions,
some of which are illustrated in the next subsections.

B. Dynamic Path Reduction

The idea behind path reduction is to reduce long chains
of states with only one successor each into a single step
from the first state in the chain to the last. Apart from
saving memory, this also has the advantage that the simulator
state does not need to be stored in the state space after
each step, which is very time-consuming (save and restore
of simulator states consume up to 90% of the time in model
checking with [MC]SQUARE, as memory is the bottleneck in
modern computers). A possible disadvantage, which can occur
depending on the program and the formula, is that states that
have to be revisited during model checking may have to be
recreated (when they are not stored). Hence, the typically
much smaller state space size does not imply that the time
required for model checking also shrinks. Instead, the time
effort can even increase. Several conditions must be met for
allowing states to be compacted by path reduction:

• no split-up due to instantiation of a nondeterministic
value

• no active interrupts
• no change of any memory location relevant for the CTL

formula
• no state occurs twice in the chain, i.e. no loop in the state

space
Static path reduction [15], [16] uses a static analyis to

derive the information about instantiation and active interrupts.
The analysis is conducted prior to simulation. When in doubt
about whether the condition will be fulfilled at a specific
location, the information provided by the static analysis has
to be that reduction is not possible. Dynamic path reduction
(DynPR) does not require a static analysis, but simply checks
for each created state during simulation whether the above
conditions are still satisfied. If so, the state becomes part of
the current chain. This results in additional effort at runtime,
but is more accurate, as there can be no doubt about whether
it is safe to add a state to a chain. Thus, dynamic path
reduction is more effective than static path reduction, and can
be implemented with far less effort. Hence, there is no reason
for using the static version any more. Actual results from the
handcrafted ATmega simulators, for which both versions have
been implemented, underline this conclusion.

For the above reasons, we have not tried to create a generic
version of static path reduction for synthetic simulators, but
directly implemented the dynamic version. The checking for
only a single successor (related to the first two conditions
in the above list) is trivial, as we only need to verify, after
creating the successors of a state, whether there is only a

Figure 4. Principle used for Dynamic Path Reduction. The memory observer
is notified on each write access, and computes whether Written addresses ∩
Addresses in formula = ∅.

single successor. Loop detection in the state space (fourth
condition) is not even hardware-dependent at all. The only
obstacle we encountered was related to the third condition, that
is, checking whether the step modifies any memory location
relevant for the CTL formula. The problem is the same as for
Dynamic Delayed Nondeterminism (cf. Sect. VI-C), detecting
memory addresses accessed by an instruction. Fig. 4 illustrates
our solution for this problem. The idea is to monitor write
accesses to memories during successor state creation. If an
access modifies a formula-relevant location, then the successor
state which was just created cannot be added to the current
chain. Instead, its predecessor (to which we need to keep
a reference) is the final state in the chain. This approach
causes the synthetic simulator to always perform one step more
than necessary to discover formula modification. However, it
eliminates any need for knowing the effects of instruction
execution in advance, thus facilitating implementation.

As the support for DynPR is completely independent of
the SGDL description of the platform, the synthesizer can
safely generate the necessary code for it. Thus, all synthetic
simulators in [MC]SQUARE support it.

In order to evaluate the effect of dynamic path reduction,
we have rerun our case studies from Tables I and II using the
synthetic ATmega16 simulator. Table III shows the result for
the Window Lift program. Generating the entire state space
with LSE and DynPR active took approximately 4 minutes.
The number of created states increased to 12,347,057, which
is why the time required was not reduced. The key difference
is that this result can also be achieved (in the same time) by
an average desktop computer, whereas the state space without
abstraction could only be built on a server equipped with 256
GB RAM. For the Experimental Plant program, we observed
a similar reduction of the size of the state space, for which the
number of stored states was reduced from (without abstraction)
105,445 to 2,221 (LSE+DynPR).

C. Dynamic Delayed Nondeterminism

Most of the simulators in [MC]SQUARE already feature an
abstraction called delayed nondeterminism [11]. The intention
of this technique is to avoid immediate instantiation when

Table III
COMPARISON OF EFFECTS OF ABSTRACTIONS IN SYNTHETIC

SIMULATORS, TEST PROGRAM WINDOW LIFT

Abstraction used Number of states stored
No abstraction 426,239,648

LSE 3,763,032
DynPR 40,734,991

LSE + DynPR 166,345

accessing nondeterministic locations, i.e., postpone split-up
of the computation path into several trajectories as long
as possible. For this purpose, we allow internal registers
of the simulated microcontroller to contain nondeterministic
values. Thus, it becomes possible to copy the information
about nondeterministic bits from one memory location to
another, instead of immediately generating all possible bit
patterns and creating distinct states for each. Only when the
nondeterministic value is to be used in an operation writing
to a location that has to remain deterministic, it will have
to be instantiated. Until then, it will remain symbolic, hence
avoiding an exponential blow-up in the number of nondeter-
ministic bits. Examples of locations which have to remain
deterministic are any locations used in the CTL formula, and
also status registers (nondeterminism in status registers results
in nondeterministic control flow, which is more difficult to
handle than nondeterminism in the memory model only).

The complexity of adding this abstraction to synthetic sim-
ulators lies mainly in the classification of instructions, and in
the description of memory locations that must always remain
deterministic. For any instruction that might, for some actual
parameters at runtime, write to a memory location that must
remain deterministic, special code has to be generated. This
code has to check whether the parameters are nondetermin-
istic, and if so, instantiate before the instruction is executed.
For all other instructions, the checking code should not be
generated for performance reasons. Instead, nondeterminism
should be propagated according to the intended behavior of
the instruction. When manually implementing this abstraction
for a simulator, performing these steps is simple. On the other
hand, performing them automatically requires knowledge
about which locations are read and written by an instruction.
In theory, this would be possible by conducting static analyses
of the execute section of each instruction (like Live Vari-
able Analysis and Reaching Definition Analysis). However,
SGDL is Turing-complete, allowing for recursive function calls
from within execute sections. Hence, the analyses would
have to be conducted not only intra-procedurally, but inter-
procedurally.

In order to reduce the development effort, we have devel-
oped a new variant of delayed nondeterminism. The new tech-
nique is called Dynamic Delayed Nondeterminism (DDND),
as opposed to the existing technique, which we now refer to
as Static Delayed Nondeterminism (SDND). It is based on a
description of locations that must remain deterministic, which
has to be described by developers in the SGDL file. Unlike for
SDND, this information will not be used by the synthesis tool

Table IV
COMPARISON OF ABSTRACTIONS FOR THE HANDCRAFTED ATMEGA16

SIMULATOR, TEST PROGRAM WINDOW LIFT

Abstraction used Number of states stored
LSE only 1,660,560

LSE + Static DND 129,030
LSE + Dead Variable Reduction 159,693

LSE + DynPR 75,717
All available combined 701

for distinguishing different instruction classes. Instead, it will
be propagated to the memory structure used by the simulator
at runtime. During simulation, instructions invariantly have
to check the memory locations they access for the need to
instantiate. Compared to SDND, this will result in runtime
overhead for each instruction, but will have the same effect
with regard to the number of states that will not have to
be created. The idea for DDND resulted from observations
in Dynamic Path Reduction, which produces improvements
similar to Static Path Reduction, but with far less effort and
neglectible runtime overhead. It is not yet possible to state a
similar result for DDND, as the technique has been developed
and is based on principles that are known to work correctly
(same as in SDND), but has not been implemented yet.

D. Dead Variable Reduction

Dead Variable Reduction (DVR) is a generalization of the
principle used in LSE. Whenever there is a memory location
(variable), a so-called dead location, that is not read again
before it is overwritten, then there is no need to store this
value until the next write. The value can be reset to 0. Thus,
states that differ only in the value of such a dead variable
can be merged into a single state, as this abstraction preserves
liveness [17].

Discovering dead variables is possible by a static analysis
called Live Variable Analysis [15], [16]. This type of analysis
is also used by compilers to discover unnecessary assignments
(when the value is not read after assigning it, then the assign-
ment is dead code and can be eliminated). Some approaches
exist which can conduct DVR without any static analysis, that
is, the DVR is performed on the fly during state space building
[18]. However, the problem for any on-the-fly approach is
that it requires knowledge about the future. The question to
be answered for any variable is whether the next access will
be a read or a write. Therefore, approaches like the one in
[18] usually require severe restrictions like the absence of
nondeterminism in the system (without nondeterminism, the
computation path cannot branch, i.e., there is only one possible
future). Hence, for our purposes such an approach would be
infeasible.

As shown in Table IV, DVR has a similar impact on the
state space size as DND has. The program used for obtaining
these values is the same as the one used for Tables II and III.

Implementing a generic DVR for synthesized simulators
requires first of all a static analysis of the input program.
The analysis has to identify all memory locations modified

by the code. For this purpose, the synthesizer must provide
information on the memory locations which are modified by
each instruction, and compile them as a hardware-dependent
static analysis into the generated simulator. However, deriving
this information automatically requires either a static analysis
of the SGDL code itself (as for SDND) or an explicit list
of locations provided by the developer. The solution we
used to circumvent this obstacle for dynamic path reduction
(monitoring write accesses) is not applicable here, as it can
only be used during simulation, not prior to it. Having gained
the information about modified memory locations, adding the
actual abstraction technique will then be rather simple: after
each step, before attempting to store the new state in the state
space, check which variables are dead, and reset them. In case
this state is already present, do not store it again.

VII. CONCLUSION

This paper shows that automatically synthesized simulators
are a competitive alternative to handcrafted simulators for
binary code model checking. While the generation of hardware
simulators from hardware descriptions has been long used
in different fields, our work is new in that it highlights and
approaches the need for automatic integration of abstraction
techniques in order to tackle the state-explosion problem. As
shown in the case study, only the smallest programs can be
verified otherwise.

Clearly, the work calls for further investigation of abstrac-
tion techniques that can be integrated automatically, and also,
the synthesis of hardware-specific static analyzers from SGDL
code. Moreover, even though we believe that SGDL and the
underlying synthesis system are general enough to handle
different kinds of microcontroller platforms, we further want
to investigate its applicability by synthesizing simulators for
16-bit microcontrollers such as the Renesas R8C/23.

ACKNOWLEDGMENT

This work was partly supported by a PhD scholarship from
the German Research Foundation (DFG). It was also supported
partly by the UMIC Research Centre, RWTH Aachen Univer-
sity.

REFERENCES

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” in ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation (PLDI’03). San Diego, California,
USA: ACM Press, June 7–14 2003, pp. 196–207.

[2] S. Bardin and P. Herrmann, “Structural testing of executables,” in ICST
08. IEEE, 2008, pp. 240–249.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The
MIT Press, 1999.

[4] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venter, D. Weil, and
S. Yovine, “Taxys: A tool for the development and verification of real-
time embedded systems,” in Computer Aided Verification (CAV 2001),
ser. LNCS, vol. 2102. Springer, 2001, pp. 391–395.

[5] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in 22nd ACM Symposium on Operating Systems Principles (SOSP). Big
Sky, MT, USA: ACM, Oct. 2009, pp. 207–220.

[6] E. Eide and J. Regehr, “Volatiles are miscompiled, and what to do about
it,” in Embedded Software (EMSOFT 2008). ACM, 2008, pp. 255–264.

[7] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau,
“EXPRESSION: A language for architecture exploration through com-
piler/simulator retargetability,” in Design, Automation and Test in Europe
(DATE ’99). ACM, 1999, pp. 485–490.

[8] W. Qin, S. Rajagopalan, and S. Malik, “A formal concurrency model
based architecture description language for synthesis of software de-
velopment tools,” in Languages, Compilers, and Tools for Embedded
Systems (LCTES ’04). ACM, 2004, pp. 47–56.

[9] CoWare. CoWare Processor Designer. [Online]. Available:
http://www.coware.com/products/processordesigner.php

[10] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV version 2: An
opensource tool for symbolic model checking,” in Computer Aided
Verification (CAV 2002), ser. LNCS, vol. 2404. Springer, 2002, pp.
241–268.

[11] B. Schlich, “Model checking of software for microcontrollers,”
Dissertation, RWTH Aachen University, Aachen, Germany, June 2008.
[Online]. Available: http://aib.informatik.rwth-aachen.de/2008/2008-
14.pdf

[12] P. Leven, T. Mehler, and S. Edelkamp, “Directed error detection in C++
with the assembly-level model checker StEAM,” in Model Checking
Software (SPIN 2004), ser. LNCS, vol. 2989. Springer, 2004, pp. 39–
56.

[13] B. Titzer. AVRora. [Online]. Available:
http://compilers.cs.ucla.edu/avrora/

[14] D. Gückel, B. Schlich, J. Brauer, and S. Kowalewski, “Synthesizing sim-
ulators for model checking microcontroller binary code,” in Proceedings
of the 13th IEEE International Symposium on Design & Diagnostics of
Electronic Circuits and Systems (DDECS 2010), 2010.

[15] K. Yorav and O. Grumberg, “Static analysis for state-space reductions
preserving temporal logics,” Formal Methods in System Design, vol. 25,
no. 1, pp. 67–96, 2004.

[16] B. Schlich, J. Brauer, and S. Kowalewski, “Application of static analyses
for state space reduction to microcontroller binary code,” Science of
Computer Programming: Special Issue on FMICS 2007 & 2008, 2010,
to appear.

[17] M. Bozga, J.-C. Fernandez, and L. Ghirvu, “State space reduction based
on live variables analysis,” in Static Analysis (SAS 1999), ser. LNCS,
vol. 1694. Springer, 1999, pp. 164–178.

[18] J. P. Self and E. G. Mercer, “On-the-fly dynamic dead variable analysis,”
in Model Checking Software (SPIN 2007), ser. LNCS, vol. 4595.
Springer, 2007, pp. 113–130.

