
Test-Case Generation for Embedded Binary
Code Using Abstract Interpretation

Thomas Reinbacher1, Jörg Brauer2, Martin Horauer3, Andreas Steininger1, and
Stefan Kowalewski2

1 Embedded Computing Systems Group, Vienna University of Technology, Austria
{treinbacher,steininger}@ecs.tuwien.ac.at

2 Embedded Software Laboratory, RWTH Aachen University, Germany
{lastname}@embedded.rwth-aachen.de

3 Department of Embedded Systems, UAS Technikum Wien, Austria
{lastname}@technikum-wien.at

Abstract. This paper describes a framework for test-case generation for
microcontroller binary programs using abstract interpretation techniques.
The key idea of our approach is to derive program invariants a priori,
and then use backward analysis to obtain test vectors that are executed
on the target microcontroller. Due to the structure of binary code, the
abstract interpretation framework is based on propositional encodings of
the program semantics and SAT solving.

1 Introduction

Traditionally, formal verification and structural testing are considered as orthog-
onal concepts for increasing the quality of software. Whereas formal verification
techniques such as model checking or abstract interpretation establish a full
proof of correctness, testing increases confidence in the correctness of a system
by meeting certain coverage criteria, where none of the examined paths violates
the specification. However, the underlying coverage criteria, which are often
dictated by industrial standards [1], are typically insufficient for finding property
violations as argued by Heimdahl et al. [2].

In the embedded systems domain, verification and validation techniques
should ideally be applied to the executable binary code of a program, since
the exact semantics of the program is not unambiguously specified in high-level
representations such as C code [3]. Further, it is not unknown for compilation itself
to introduce errors [4]. However, embedded systems code often strongly relies on
the behavior and state of the hardware and on interaction with the environment.
The need to model these two properties properly, among others, aggravates the
state explosion in model checking and limits its applicability. On the other hand,
abstract interpretation provides a scalable approach to verification that often
suffers from imprecision, and subsequently, a high number of spurious warnings.
This is even more so on the binary-code level, where interleavings of arithmetic
and logical operations as well as the finite precision of registers poses additional
challenges.

However, in case of a violated property, abstract interpretation typically does
not provide a counterexample, which is extremely helpful for fixing the defect [5].
By way of contrast, this property is fulfilled by both model checking and testing.

Approach The ultimate goal of our work is to derive real counterexample traces
for binary programs. To do so, our approach uses abstract interpretation to detect
potential violations, and then derive paths through the program that could have
led to that violation using backwards analysis. These paths define test vectors,
which are examined on the real hardware to filter spurious traces that have been
introduced through over-approximation.

Contributions Spurious warnings are a major issue when applying abstract
interpretation in industrial practice. Typically, investigating spurious warnings
relies on manual inspection of program invariants. The complex structure of
embedded code makes manual inspection difficult and time-intensive. To leverage
these issues in embedded-software verification, we contribute a framework that:
(i) applies abstract interpretation to generate assertion-directed test cases; (ii)
provides a link to the actual target hardware; (iii) automatically identifies spurious
test traces.

2 Test-Case Generation Using Abstract Interpretation

Our framework (cf. Fig. 1) takes an executable binary file and a specification
(cf. Sect. 2.1) as inputs. The binary file is ready to be run on the target hardware.
After parsing, we build an initial control flow graph (CFG) of the binary and
apply abstract interpretation (cf. Sect. 2.2) to derive program invariants. These
invariants are used by the test-case generator to identify possible specification
violations. Then, a backward analysis derives actual program inputs (cf. Sect. 2.3),
that drive execution towards the specification violation. The test traces are then
transferred to and executed on real hardware (cf. Sect. 2.4), i.e., an IP-core
instance of the target microcontroller running within an FPGA embedded in
its operation environment. A test-case monitor is attached to the IP core that
tracks specification items during execution and provides runtime feedback.

Inputs Analysis Deployment / FPGA

binarybinary

specspec

abstract
inter-

pretation

test-case
generator

test-case
monitor

target
IP core

[i
n
va

ri
a
n
ts

]

[t
es

t
ca

se
s]

[feedback][verdicts][jumps]

Fig. 1. Framework overview

2.1 Specification Language

In the past, we have carried out a case study [6] in cooperation with an industry
partner using [mc]square [7], which is a binary code verification tool. When
confronting our partner with the full expressive power of temporal logics (CTL
in this case), it turned out that it is particularly difficult for test engineers to
translate their well-understood textual specifications into temporal logic formulas.
Moreover, most specification items of the case study were local assertions (prop-
erties that hold at a specific program location) or global invariants (properties
that hold at any program location), an observation also emphasized by Hoare [8,
p. 10]. Consequently, to express program properties of interest, we propose a
simple specification language, which is defined through the following grammar:

Ψ ::= A(pc, ϕ) | I(ϕ)
ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | AP

To express the semantics of this specification language, let a state of a
program be a tuple 〈pc,m〉 ∈ Locs×Mem, where Locs is a finite set of program
locations, and Mem represents the set of all possible memory configurations of the
microcontroller. Then, the state space of the program is a subset of Locs×Mem.
The property ϕ is a predicate over memory locations m ∈ Mem. Additionally,
AP denotes the set of atomic propositions about memory cells in Mem. The
satisfaction relation associated with ϕ is intuitively clear, following the standard
inductive definition. If m ∈ Mem satisfies ϕ, we write m |= ϕ.

Properties, in turn, can be of local or global nature. A local assertion is a
property A(pc, ϕ) attached to a certain program location pc ∈ Locs. Given a
set of states S ⊆ Locs × Mem, then A(pc, ϕ) holds w.r.t. S iff m |= ϕ for all
〈pc′,m〉 ∈ S with pc = pc′. Similarly, a global invariant I(ϕ) holds iff m |= ϕ
regardless of pc′.

Our framework either reads a user-defined specification or uses existing
assertions from the high-level representation of the program by parsing compiler-
generated debug information.

2.2 Abstract Interpretation

The key idea in abstract interpretation is to simulate the execution of each concrete
operation g : C → C in a program using an abstract analogue f : D → D, where
C and D denote the domains of concrete values and descriptions. Each abstract
operation f is designed to model its concrete counterpart g in the following sense:
If d ∈ D describes a concrete value c ∈ C, then the result of applying g to c is
described by applying f to d. Typically, the abstract operations are designed
manually. However, handcrafting transformers for the complete instruction set of
a microcontroller, which consists of more than 100 instructions, is time-consuming
and error-prone. Consequently, we synthesize optimal transfer functions [9] from
propositional encodings of the instructions’ semantics using SAT solving [10].
The process of translating instructions into propositional Boolean formulas is
often colloquially referred to as bit-blasting.

To derive a set of test cases, our abstract interpretation framework first
computes invariants using intervals and synthesized transformers. If the invariants
exhibit a potential property violation, we use backward analysis to derive a path
(the test case) from the property violation to the start of the program. It is
important to observe that sound abstract interpretation itself requires a CFG of
the program to be available. However, recovering indirect control from binaries is
a notoriously difficult problem [11]. Consequently, the CFG used in the abstract
interpretation framework is incrementally extended using information gained
through the test-case execution. Since the aim of our work is to detect test traces
that exhibit faulty behavior instead of proving correctness of an implementation,
this approach is convenient. The remainder of this section discusses two approaches
used to derive program invariants.

Affine transfer functions of basic blocks. The semantics of a microcontroller
instruction can be encoded in propositional logic, which has become a standard
technique in software verification, owing much to the advances in bounded
model checking [12]. To illustrate, consider the instruction INC A on an 8 bit
architecture, which increments register A by one. The input and output values
of A are represented by bit-vectors of length 8, denoted a and a′, respectively.
Then, the effects of applying INC A can be expressed propositionally, where a[i]
denotes the i-th bit of a and ⊕ denotes the exclusive-or:

INC A :=
∧7

i=0

(
a′[i]↔ a[i]⊕

∧i−1
j=0 a[j]

)
Similar encodings can be derived for the entire instruction set [13]. The value of
these encodings is that optimal transfer functions for either single instructions or
whole sequences of instructions can be derived using successive calls to a decision
procedure, in this case a SAT solver, prior to executing the actual analysis. Affine
equalities [14] are systems of the form

∧m−1
i=0 (

∑ni−1
j=0 λi,j · vj = di), where vj

are program variables and λi,j , di ∈ Z, which can be used to describe relations
between variables. Our approach derives optimal affine transformers for basic
blocks from the Boolean encodings, using the algorithm developed by Brauer
and King [10, Sect. 3.2]. As an example, consider the above instruction, and for

brevity, let 〈〈a〉〉 =
∑7

i=0 2ia[i]. Then, we obtain the following affine system:

(〈〈a〉〉 ≤ 254)⇒ (〈〈a′〉〉 = 〈〈a〉〉+ 1) (〈〈a〉〉 = 255)⇒ (〈〈a′〉〉 = 0)

Using this representation, linear constraints — most notably octagons [15] — that
distinguish inputs that lead to overflows are derived from the Boolean formulas.
Otherwise, no affine relation between a and a′ could be determined since, e.g.,
254 + 1 = 255 and 255 + 1 = 0 in unsigned machine-arithmetic.

Local invariants through interval analysis. Interval analysis determines
invariants using the computationally attractive interval abstract domain [16].
Let N? = {0, . . . , 255} denote the set of numbers representable with a single

8-bit word. Then, a word-level interval is composed of [a, b] with a, b ∈ N? and
a ≤ b. With > = [0, 255], ⊥ = ∅, and a join defined as [a1, b1] t [a2, b2] =
[min(a1, a2),max(b1, b2)], the domain forms a complete lattice.

To illustrate interval arithmetic, consider an ADD A,B instruction, summing
the operands A, B and storing the result back to A. Suppose, we enter the
instruction with the intervals A = [12, 74] and B = [10, 14], then we can derive
that the resulting value in A will be within the interval [12+10, 74+14] = [22, 88].
These invariants are derived for each program counter location using fixed-
point iteration and a combination with affine relations, following the reduction
algorithm described in [13, Sect. 6]. More details are given in [17].

As a result, the analysis yields a list of word-level intervals over memory
locations attached to every pc location, i.e., 〈pc, (A[a0, b0],B[a1, b1], . . .)〉. These
invariants are used to detect potential violations of the specification. For example,
if the global invariant I(A < 25) should hold, then we identify all locations as
potential violations that have intervals for A including valuations ≥ 25. The
test-trace generation algorithm starts from these program locations.

2.3 Test-trace generation

Our algorithm starts from a program location where the specification may be
violated, and systematically searches for traces that lead to this violation. Given
an assertion Ψ and an invariant θ, we convert ¬Ψ into a disjunctive normal
form and treat ¬Ψ ∧ θ as the desired postcondition. Next, we apply the affine
transfer function in reverse using integer linear programming, which gives us a
precondition, and then, this step is iteratively applied for all possible predecessors,
until the entry of the program is reached. The preconditions are computed in
breadth-first order, which guarantees that shortest paths to the entry are found.
For reasons of continuity, we defer the presentation of an example to Sect. 3.

2.4 Test-trace deployment and execution

A single test trace t is a path of program counter locations π := 〈pc0, . . . , pcn〉
with pci ∈ Locs and a set of external inputs In := 〈pc, i〉 attached to certain
program locations. For example, In := 〈0xc1c1,p1← 0xb2〉 represents that 0xb2
will be provided on I/O port p1 at program counter location 0xc1c1.

In our approach, we do not explicitly alter the code itself, nor do we insert
additional event-triggers into the source code, which is a common practice
in runtime verification [18]. Our monitoring is done by a hardware monitor
unit, attached to an industrial IP core of the target microcontroller. The whole
execution takes place on an FPGA, connected to the actual environment of
the application. The monitor unit allows us to non-intrusively and on-the-fly
monitor and track memory accesses of the microcontroller core. Besides, the
monitor compares the current program counter with the expected one given in π.
Whenever this comparison fails, we halt the microcontroller, mark t as infeasible,
and load the next test trace, thus, subsequently ruling out spurious test traces.
However, if the unexpected branch was caused by an indirect jump, we add the

#define ABS(a) (((a)<0)?-(a):(a))
char getSensor(void){ return P1;}
void sendPWM(void){...;}

int main(void){
char val;

(1) while (1){
(2) val = ABS(getSensor ());
(3) while(val > 0){
(4) sendPWM ();
(5) val --;

}
(6) ASSERT(val == 0);

}
}

va
l≤
0 val>

0

entry

1

2

3

4

5

6

exit

Fig. 2. Example code (left) and CFG (right)

newly detected jump target to the CFG. In case the actual execution follows the
predicted path π, the monitor will verify whether the specification items hold
along the path (for global invariants) or on certain program locations (for local
assertions).

3 Worked Example

Fig. 2 shows an embedded C code snippet and its CFG. The labels of the CFG
nodes relate to the program counter locations on the left. The code reads a sensor
value from an 8-bit input port and converts the value to its absolute value, storing
the result in val. Next, a while loop is entered sending val times PWM pulses to
the output and decrementing val each iteration. Whenever the predicate val > 0
is violated the assertion is reached and the loop starts again.

Based on a first intuition, the assertion will hold, regardless of the sensor values.
The presumably positive variable val is decremented towards 0. Interestingly,
the assertion does not hold under all inputs. Consider the binary sensor input
b1000000, which corresponds to −128 in two’s complement. However, the ABS

macro will not alter the value since −(−128) = −128 due to the limited bit-width.
It is obvious that the predicate (−128 > 0) at the beginning of the while loop is
false and the assertion does not hold.

Our algorithm starts by negating the predicate in the assertion, which gives
(val < 0)∨(val > 0) in program location 6. The assertion has a single predecessor,
i.e., node 3, for which we have derived the following transfer function:

(getSensor() ≥ 0 ∧ getSensor() ≤ 127) ⇒ (val′ = getSensor())
(getSensor() ≥ −127 ∧ getSensor() ≤ −1) ⇒ (val′ = −getSensor())
(getSensor() ≥ −128 ∧ getSensor() ≤ −128)⇒ (val′ = −128)

The third one is examined, which gives us a test trace with inputs that lead to a
violation of the assertion, namely π = 〈1, 2, 3, 6〉; In = 〈2, getSensor()← −128〉
where the input in line 2 is −128. This test trace is executed on the IP core and
the runtime monitor confirms that π is indeed a real counterexample trace.

4 Related Work

Test-case generation using formal methods, is an active area of research. Cousot
and Cousot introduce abstract interpretation based program testing as abstract
testing in [19], an approach closely related to our work. However, we apply
abstract interpretation to machine code and offer a way to automatically rule out
spurious counterexamples. Another popular approach is to use model checkers
to derive test suites that comply with industrial coverage criteria [20]. With
increasing complexity, these approaches suffer from similar problems as traditional
model checking.

Wenzel et al. [21] describe cross-platform verification of embedded C code.
Platform-specific C code is translated into semantically equivalent C code used
by CBMC to generate counterexamples, which are executed on the host and
on the target platform. Thus, their approach can find errors introduced by the
compiler. Our approach is independent of the high-level implementation and does
not require to instrument the code, which is vital for verifying timing properties.
Deriving test data for machine code with a structural coverage goal is described
in [22]. Their tool Osmose translates executable code to a generic assembly
language and uses concolic execution for path exploration.

5 Discussion & Future Work

Summary In this paper, we have addressed the question of deriving test cases
from microcontroller binary code. Unlike other techniques, our approach uses
abstract interpretation using a combination of different abstract domains to
derive test cases directly from the executable program code. The purpose of our
work is not necessarily to derive test cases that satisfy certain coverage criteria,
but rather to systematically infer paths that exhibit faulty behavior.

Future Work In addition to the global and local assertions (cf. Sect. 2.1), we want
to include time-bounded properties of the form Θ(ϕ1, ϕ2, δ). Such properties
state that if the predicate ϕ1 holds then ϕ2 must hold within δ ∈ N clock cycles.
Clearly, future efforts also include a case study showing the feasibility of our
approach when applied to industrial embedded code.

Acknowledgement

The work of Thomas Reinbacher and Andreas Steininger has been supported
within the FIT-IT project CEVTES managed by the Austrian Research Agency
FFG under grant 825891. The work of Martin Horauer has been supported within
the FHplus project DECS managed by the Austrian Research Agency FFG under
grant 811414. The work of Jörg Brauer and Stefan Kowalewski has been, in part,
supported by the UMIC Research Centre of Excellence at the RWTH Aachen
University.

References

1. RTCA/DO-178B: Software considerations in airborne systems and equipment
certification (1992) Washington DC, USA.

2. Heimdahl, M.P.E., George, D., Weber, R.: Specification test coverage adequacy
criteria = specification test generation inadequacy criteria? In: HASE, IEEE (2004)
178–186

3. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What you
see is not what you execute. In: VSTTE, Toronto, Canada (2005)

4. Eide, E., Regehr, J.: Volatiles are miscompiled, and what to do about it. In:
EMSOFT, ACM (2008) 255–264

5. Clarke, E.M., Veith, H.: Counterexamples revisited: Principles, algorithms, appli-
cations. In: Verification: Theory and Practice. Volume 2772 of LNCS., Springer
(2004) 41–43

6. Reinbacher, T., Horauer, M., Schlich, B., Brauer, J., Scheuer, F.: Model checking
assembly code of an industrial knitting machine. In: EM-Com, IEEE (2009) 97–104

7. Schlich, B.: Model Checking of Software for Microcontrollers. Dissertation, RWTH
Aachen University, Aachen, Germany (2008)

8. Hoare, C.: Assertions: A personal perspective. IEEE Annals of the History of
Computing 25 (2003) 14–25

9. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: VMCAI. Volume 2937 of LNCS., Springer (2004) 252–266

10. Brauer, J., King, A.: Automatic abstraction for intervals using boolean formulae.
In: SAS. Volume 6337 of LNCS., Springer (2010) 167–183

11. Kinder, J., Veith, H., Zuleger, F.: An abstract interpretation-based framework
for control flow reconstruction from binaries. In: VMCAI. Volume 5403. (2009)
214–228

12. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58 (2003)

13. Brauer, J., King, A., Kowalewski, S.: Range analysis of microcontroller code using
bit-level congruences. In: FMICS. Volume 6371 of LNCS., Springer (2010) 82–98

14. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6
(1976) 133–151

15. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1) (2006) 31–100

16. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: 2nd International Symposium on Programming. (1976) 106–130

17. Brauer, J., Noll, T., Schlich, B.: Interval analysis of microcontroller code using
abstract interpretation of hardware and software. In: SCOPES, ACM (2010)

18. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Form. Methods Syst. Des. 24(2) (2004) 189–215

19. Cousot, P., Cousot, R.: Abstract interpretation based program testing. In: SSGRR,
Scuola Superiore G. Reiss Romoli (2000) Invited paper.

20. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test., Verif. & Reliab. 19(3) (2009) 215–261

21. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Cross-platform verification frame-
work for embedded systems. In: SEUS, Springer (2007) 137–148

22. Bardin, S., Herrmann, S.: OSMOSE: Automatic structural testing of executables.
Softw. Test., Verif. & Reliab. (2010) To appear.

