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Abstract. This paper presents a method for runtime verification of
microcontroller binary code based on past time linear temporal logic
(ptLTL). We show how to implement a framework that, owing to a
dedicated hardware unit, does not require code instrumentation, thus,
allowing the program under scrutiny to remain unchanged. Furthermore,
we demonstrate techniques for synthesizing the hardware and software
units required to monitor the validity of ptLTL specifications.

1 Introduction

Program verification deals with the problem of proving that all possible execu-
tions of a program adhere to its specification. Considering the complexity of
contemporary embedded software, this is a particularly challenging task. Conven-
tional ad-hoc testing is significantly less ambitious; it is thus the predominant
method in the (embedded) software industry. Typically, a set of test-cases is
derived manually or automatically in a best effort fashion. Then, the arduous
task of judging the results of a test-case run often remains with the test engineer.

1.1 Runtime Verification by Code Instrumentation

The field of runtime verification [7] has gained momentum as it links traditional
formal verification and monitoring the execution of test cases. The aim is to
increase confidence in correctness of the system, without claiming freedom from
defects. In runtime verification, test oracles, which reflect the specification, are
either automatically derived (e.g., from a given temporal logic formula that
specifies a requirement) or formulated manually in some form of executable code.
Correctness of an execution is then judged by means of evaluating sequences
of events observed in an instrumented version of the program under scrutiny.
Instrumentation can either be done manually, or automatically by scanning
available program nodes (e.g., assignments, function calls, . . . ) at the level of
the implementation language. Function calls are then inserted to emit relevant
events to an observer, i.e., the test oracle. The latter approach has proven feasible
for high-level implementation languages such as C, C++, and Java, as well as
for hardware description languages such as VHDL and Verilog. Various runtime
verification frameworks have thus emerged [6, 8, 13,14,20].



1.2 Pitfalls of Code Instrumentation

Despite considerable technical progress, existing approaches to runtime verifica-
tion are not directly transferable to the domain of embedded systems software,
mainly due to the following reasons:

1. Embedded code often adopts target-specific language extensions, direct hard-
ware register and peripheral access, and embedded assembly code. When
instrumenting such a code basis, one has to take all the particularities of the
target system into account, depleting the prospect of a universal approach.

2. In its present shape runtime verification proves the correctness of high-level
code. However, to show that a high-level specification is correctly reproduced
by the executable program, it is necessary to verify the translation applied
to the high-level code as it is not unknown for compilation to introduce
errors [2, 9, 24]. One thus needs to prove that for a given source code P , if
the compiler generates a binary code B without compilation errors, then B
behaves like P [29]. Proving correctness of the compiler itself is typically not
feasible due its complexity and its sheer size [21, 22]. Flaws introduced by
the compiler may thus remain unrevealed by existing approaches.

3. Instrumentation at binary code level is never complete as long as the full
control flow graph (CFG) is not reconstructed from the binary program.
Although CFG reconstruction of machine code is an active research area [3,
12,17], generating sound yet precise results remains a challenge.

4. Instrumentation increases memory consumption, which may be of economical
relevance for small-sized embedded targets.

We conclude that a non-instrumenting approach for microcontroller binary code
may be a notable contribution to further establish the use of lightweight formal
techniques, such as runtime verification, in the embedded software industry.

1.3 Requirements to Runtime Verification of Microcontroller Code

To overcome the pitfalls discussed so far, which prohibit the application of
existing frameworks to the embedded systems domain, it is necessary to provide
a framework that works on the level of binary code and additionally satisfies the
following requirements:

Req1: Generality For a verification on the binary code level the target micro-
controller must be fixed. However, the approach shall not be bound to a
certain compiler (version) or high-level programming language.

Req2: No Code Instrumentation Typically, software event triggers are in-
strumented to report execution traces as sequences of observations. For
small-scale embedded platforms, it is necessary to extract event sequences
without code instrumentation.

Req3: Provide Mechanics to Evaluate Atomic Propositions The atomic
propositions (AP ) of the specification need to be evaluated on microcontroller
states of the running system. We need to find a reasonable trade-off between
expressiveness of the AP and the complexity of their evaluation.



Furthermore, to be useful in an industrial environment, some practical require-
ments need to be considered:

Req4: Automated Observer Synthesis From a user point of view, it is desir-
able to input a specification in some (temporal) logic, which is automatically
synthesized into an observer that represents the semantics of the temporal
property.

Req5: Usability We aim at a framework which is applicable in industrial soft-
ware development processes; at best, this is a push-button solution. It shall be
possible to include implementation-level variables in the specification, which
are automatically mapped to the memory state on the target hardware.

1.4 Contributions to Runtime Verification

The contribution of this paper is a framework for supervising past time linear
temporal logic (ptLTL) properties [15] in embedded binary code. ptLTL allows to
specify typical requirements to embedded software in a straightforward fashion,
which contrasts with our experiences using Computation Tree Logic (CTL) [31].
Further, we present a host application that interacts with a customized hardware
monitoring unit and a microcontroller IP-core (executing the software under
scrutiny), both of which are instantiated within an FPGA. In our approach,
supervision of ptLTL specifications can take place either offline (using the host
application) or online in parallel to program execution. Both options come along
without any kind of code instrumentation or user-interaction. We implemented
the presented approach into our testing framework called CevTes [30].

1.5 Structure of the Paper

The presentation of our contributions is structured as follows. In Sect. 2, we
present preliminaries used throughout the paper. Sect. 3 introduces our framework
for runtime verification of binary code. We apply our approach to a real-life
example in Sect. 4. We put our work in context with related work in Sect. 5 and
conclude with a discussion of achievements in Sect. 6.

2 Preliminaries

This section introduces notations used in the remainder of the paper, including a
formal microcontroller model and the finite-trace temporal logic ptLTL.

2.1 Formal Microcontroller Model

Addressing memory locations: Let Addr = {0 ≤ x < |Mem| : x ∈ N∪{0}}
denote the set of memory locations of the microcontroller, where Mem represents
the (linear) address space of the microcontroller memory. We write rx to address
a specific memory location, e.g. , r20 denotes the memory location with address
20. We assume a memory mapped I/O architecture (e.g. Intel MCS-51), thus,
I/O registers reside within Mem.



State of the microcontroller program: In the following, let Nk = {0, . . . , k−
1}. A state S of the microcontroller is a tuple 〈pc,m〉 ∈ Locs × (Addr → N2w),
where Locs is a finite set of program counter values, and m : Addr → N2w is
a map from memory locations (with bit-width w) to memory configurations.
The state space of the program is thus a subset of Locs × (Addr → N2w). We
denote the initial microcontroller state S0 by 〈0x00,m0〉 where m0 represents the
configuration of all memory locations after power-up and 0x00 is the assumed
reset vector.

State updates: State updates trigger a state transition, thereby, transforming
a predecessor state S−1 into the current state S. A state update is a triple
δ = 〈ζδ,@δ, pcδ〉, where ζδ is the new configuration of the altered memory
location, @δ is its address, and pcδ is the new program counter value. Given a
strict sequential execution of the program, state updates are in temporal order. A

state update S−1 δ−→ S transforms S−1 = 〈pc−1,m−1〉 into S = 〈pcδ,m〉 where:

m(i) =

{
ζδ if i = @δ

m−1(i) otherwise

A sequence of events, denoted π, is a trace of state updates δ, e.g. , π = 〈δ0 . . . δn〉.

2.2 Past Time LTL

While past time operators do no yield extended expressive power of future time
LTL [10, Sect. 2.6], a specification including past time operators may sometimes
be more natural to a test engineer [19,23]. A ptLTL formula ψ is defined as

ψ ::= true | false | AP | ¬ψ | ψ • ψ
�ψ | � ψ | � ψ | ψ Ss ψ | ψ Sw ψ

where • ∈ {∧,∨,→}. �ψ means previously ψ, i.e., it is the past-time analogue
of next. Likewise, the other temporal operators are defined as: �ψ expresses
eventually in the past ψ and �ψ is referred to as always in the past. The duals of
the until operator are Ss and Sw, i.e. , strong since and weak since, respectively.

Monitoring operators: These basic operators can be augmented by a set
of monitoring operators [15, 20]. The semantics of the monitoring operators is
derived from the set of basic operators in ptLTL, thus, do not add any expressive
power. However, they provide the test engineer a succinct representation of the
most common properties emerging in practical approaches:

ψ ::= ↑ ψ | ↓ ψ | [ψ,ψ)s | [ψ,ψ)w

↑ ψ stands for start ψ (i.e., ψ was false in the previous state and is true in
the current state, equivalent to ψ ∧ ¬ � ψ), ↓ ψ for end ψ (ψ was true in the



previous state and is false in the current state, equivalent to ¬ψ ∧ �ψ), and
[ψ1, ψ2) for interval ψ1 ψ2 (ψ2 was never true since the last time ψ1 was true,
including the state when ψ1 was true, equivalent to ¬ψ2 ∧ ((�¬ψ2) S ψ1)). The
set of atomic propositions AP contains statements over memory locations in Locs.
Space constraints force us to refer the reader to [10,15,20] for a formal semantics.

Determining satisfaction: It is important to appreciate that satisfaction of
a ptLTL formula can be determined along the execution trace by evaluating only
the current state S and the results from the predecessor state S−1 [15].

3 System Overview

The following section details our runtime verification framework, as depicted
in Fig. 1, which works on microcontroller binary code rather than a high-level
representation of the program, thus meeting Req1.
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Fig. 1. System overview

We address Req2 by a hardware monitor unit, which is transparently attached
to an industrial microcontroller IP-core running on an FPGA. The monitor allows



to extract execution traces without code instrumentation. We tackle Req3 by a
twofold approach: (i) Offline mode: We permanently send state updates δ from an
hardware implemented event logger to a host application which applies δ to the
current state S−1 to obtain the successor state S. The AP of the ptLTL formula
ψ are evaluated on S and the validity of ψ is decided by a synthesized SW ptLTL
observer. (ii) Online mode: As a self-contained alternative, we check the AP of
the ptLTL formula on-the-fly and decide the validity of ψ by a synthesized HW
ptLTL observer directly on the FPGA.

We meet Req4 by instantiating an algorithm described by Havelund and
Roşu [15], i.e., we generate observer for ptLTL as executable Java or VHDL code.
Finally, we comply with Req5 by providing a graphical interface to the system and
an optional debug file parser allowing to state formulas over high level symbols.

3.1 ptLTL Observer Synthesis

Runtime verification requires an observer to be attached to the system under
test. Our approach supports a full FPGA based solution as well as a combined
one where a hardware event logger stimulates a Java class on the host computer.
Technically speaking, we derive (a) Java classes and (b) VHDL entities, both
representing an observer for the specification ψ. In a subsequent step, (a) is
compiled into executable Java code and (b) is synthesized into a netlist. Both
observers rely on the hardware monitor unit to evaluate the AP of ψ. Whereas
(a) utilizes event updates about the state of the microcontroller, (b) makes use
of a dedicated atomics checker hardware unit.

Observer synthesis thus consists of the following stages: (i) We use the ANTLR
parser generator [26] to parse a ptLTL formula ψ, which yields an abstract syntax
tree (AST) representing the specification. (ii) After some preprocessing of the
AST, we determine the n subformulas ψ0 . . . ψn of ψ using a post-order traversal
of the AST. (iii) We generate observers as executable Java or synthesizable VHDL
code [15].

3.2 Hardware Monitor Unit

The hardware monitor unit (cf. Fig. 1) is attached to the system under test, an
(unmodified) off-the-shelf microcontroller IP-core1, which is embedded into its
application environment. The observer consists of three main components, namely
an event logger, an atomics checker unit, and a synthesized ptLTL observer. The
remainder of this section discusses the details of these components.

Event logger The event logger wiretaps the data and the program interface of
the microcontroller and collects memory updates δ non-intrusively. For example, if
the currently fetched instruction is MOV [*20, 0x44], which moves the constant
value 0x44 into r20, and the current program counter pc equals 0xC1C1, then the
event logger assembles a new state update δ = 〈0x44, 20, 0xC1C1〉.
1 For our actual implementation we employ an Intel MCS-51 IP-core from Oregano

Systems (http://www.oregano.at).

http://www.oregano.at


Atomics checkers The purpose of these units is to check the atomic propositions
of ψ, one per unit. Ideally, we would favor a full-fledged hardware-only solution
allowing for arbitrary atomic propositions to be checked on-the-fly. However,
as we aim at a lightweight monitor with small area overhead, we opted for
offering two implementation variants: a software-implemented offline checker
supports arbitrary expressions for atomics, and we use constraints similar to
Logahedra [16] for the hardware-based online approach, thus allowing to establish
a balance between hardware complexity and expressiveness. More specifically, the
hardware-based atomics checker supports conjunction of restricted two-variable-
per-inequality constraints of the form

(±2n · ri ± 2m · rj) ./ C

where ri, rj ∈ Mem, C ∈ Z, n,m ∈ Z, and ./ ∈ {=, 6=,≤,≥, <,>}. The second
operand is optional, thus allowing range constraints of the form ±(2n) · ri ./ C.

Fig. 2 shows the generic hardware design to evaluate a single atomic proposi-
tion. The unit is connected to the data interface. We instantiate one such unit
for each ap ∈ AP ; the derived verdicts atomic(0 . . . |AP |) serve as input for the
ptLTL observer. The constant C is loaded into the compare unit; mode constitutes
control signals to determine the operation to be performed on the operands. The
write-enable signal issued by the CPU triggers the atomics checker unit which
stores the value on the data bus in a register iff the destination address equals i
or j, respectively. The shifter unit supports multiplication and division by 2n.
The arithmetic unit is a full-adder, serving both as adder and subtracter. Observe
that, when Add(〈a〉, 〈b〉, c) is a ripple carry adder for arbitrary length unsigned
vectors 〈a〉 and 〈b〉 and c the carry in, then a subtraction of 〈a〉−〈b〉 is equivalent
to Add(〈a〉, 〈b〉, 1). Relational operators can be built around adders in a similar
way [18, Chap. 6].

Synthesized HW ptLTL observer The synthesized ptLTL observer unit sub-
sumes the verdicts of the diverse atomic checker units over the respective AP of ψ
into a final decision π |= ψ. While in the offline mode this function is performed
in software, a dedicated hardware block is needed for the online mode.

Operands
register
& Mux

Shifter

Shifter

Arithm.
unit

add/subb

Compare
=, 6=,≤
≥, <,>

RAM bus
RAM we

mode
constant

atomic(i)

Fig. 2. The atomics checker unit



Housekeeping The hardware monitor unit supports writing the *.hex file
under scrutiny into the target system’s PROM and handles communication tasks
between FPGA and host application using a high-speed USB 2.0 controller.

3.3 Host Application

The host application is responsible for offline runtime verification. It reads a
*.hex binary file and a ptLTL formula ψ. Optionally, compiler-generated debug
information is parsed and symbols in the high-level implementation language are
related to memory addresses in microcontroller memory. Rather than expressing
properties over memory locations within the RAM of the microcontroller, this
approach allows high-level implementation symbols to be included in the formula.
For example, the formula ↑ foo = 20 is satisfied iff the memory location that
corresponds to the variable foo, say, r42, does not equal 20 in the predecessor
state S−1 and equals 20 in the current state S. Therefore, even though the
analysis is based on binary code, it is possible to state propositions over high-level
symbols, which eases the process of specifying desired properties.

State updates State transitions S−1 δ−→ S are performed on each state update
δ, received from the event logger. Incoming events are categorized as follows:
(i) events that perform plain state updates and (ii) events that alter memory
locations used in atomic propositions of the formula. Events in (i) are used to
keep a consistent representation of the current microcontroller state, whereas
events in (ii) additionally trigger the SW ptLTL observer to derive a new verdict.

Event evaluation Atomic propositions are directly evaluated on the current
state S, and the resulting verdicts are then forwarded to the observer that decides
the validity of formula ψ.

Synthesized SW ptLTL observer Whenever the destination address @ of a
state update δ matches any memory location in the atomic propositions AP of
ψ, the generated software ptLTL observer code is executed and a new verdict is
derived. If the property is violated, the unit reports “×” to the user. State updates
are in temporal order, thus, it would be possible to store a sequence 〈δ1, . . . , δn〉
of state updates and apply the observer afterwards, decoupled from program
execution. However, in our experiments, it was always possible to evaluate the
events without time-penalty, i.e., as they occur while the program is running.
The stored state space consists only of the current state S.

4 Worked Example

In the remainder of this section, we report on applying our toolset to embedded
C code. As an example, we consider a function block specified by the PLCopen
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Fig. 3. The emergency stop function block as nondeterministic finite state machine

consortium, which has defined safety-related aspects within the IEC 61131-3
development environment to support developers and suppliers of Programmable
Logic Controllers (PLC) to integrate safety-related functionality into their systems.
In the technical specification TC5 [28], safety-related function blocks are specified
at a high level while the actual implementation is left to the application developer.
The emergency stop function block [28, pp. 40 – 45], which we consider in the
following, is a function block intended for monitoring an emergency stop button.

Interfaces The function block senses five Boolean inputs, namely Activate,
S EStopIn, S StartReset, S AutoReset, Reset and drives three boolean outputs
Ready, S EStopOut, Error and one 16-bit wide diagnosis output DiagCode.
S EStopOut is the output for the safety-related response.

Requirements The functional description of the block is given by PLCopen
as a state diagram [28, p. 42]; Figure 3 shows a simplified version of the state
machine (transition conditions and transitions from any state to the idle state
(S1) have been omitted to make the presentation accessible). Overall, the block
comprises nine states, i.e., Idle (S1), Init (S2), Wait for S EStopIn1 (S3), Wait
for Reset 1 (S4), Reset Error 1 (S5), Safety Output Enabled (S6), Wait for
S EStopIn2 (S7), Wait for Reset 2 (S8), and Reset Error 2 (S9).

Implementation The implementation consists of approximately 150 lines of
low level C code targeting the Intel MCS-51 microcontroller. For our experiments,
we used the Keil µVision3 compiler. The compiled and linked *.hex file is written
into the Intel MCS-51’s PROM, serving as the system under test.



4.1 ptLTL Specification

In the implementation, the 8-bit unsigned variable currState represents the
current state, of the function block. An enumeration maps the state numbers
{S1, . . . , S9} to identifiers. To simplify presentation, we write ΘSx as abbreviation
for the event currState = Sx. We proceed by describing two desired properties of
the system.

Property 1 Predecessors of state Safety Output Enabled (S6) are {S2, S4, S7, S8},
thus, S6 shall not be reached from any other state, which is formalized as:

ψ1 := ↑ (ΘS6)→ [ ↑ (ΘS2 ∨ΘS4 ∨ΘS7 ∨ΘS8), ↑ (ΘS1 ∨ΘS3 ∨ΘS5 ∨ΘS9))
S

The start of event ΘS6 implies that the start of {ΘS2, ΘS4, ΘS7, ΘS8} was observed
in the past; since then, the start of {ΘS1, ΘS3, ΘS5, ΘS9} was never observed.

Property 2 Transitions to the reset states Reset Error 1 (S5) and Reset Error
2 (S9) shall only originate from Wait for Reset 1 (S4) and Wait for Reset 2
(S8), thus, have only a single predecessor state.

ψ2 := ↑ (ΘS5)→↓ (ΘS4)
ψ3 := ↑ (ΘS9)→↓ (ΘS8)

The start of event ΘS5 causes the end of event ΘS4; the start of ΘS9 causes the
end of ΘS8.

4.2 Online Runtime Verification

We synthesized observers for properties ψ1, ψ2, and ψ3 (cf. Fig. 5), both as VHDL
hardware description and Java code. We sampled the emergency stop module
with different, randomly-generated input patterns and could not find a property
violation. To prove our approach feasible, we intentionally altered the next-state
code of the state-machine implementation in a way that the transition from S7

to S8 is replaced by a transition from S7 to S9, thus conflicting with ψ3.

Error scenario The relevant C code of the implementation is listed in Fig. 4.
Whereas the code on the left shows the correct implementation of state Wait for
S EStopIn1 (S3), the code on the right erroneously introduces a transition to
the state Reset Error 2 (S9). We first synthesize hardware observers for ψ1, ψ2,
and ψ3. Next, the host application configures the atomic checker unit with the
atomic propositions that need to be evaluated, that is:

ap1 : ΘS8 , (currState = ST WAIT FOR RST2)

ap2 : ΘS9 , (currState = ST RST ERR2)

The (Boolean) verdicts over the atomics are the inputs to the synthesized ptLTL
observer, i.e., the vector atomics of the VHDL entity shown in Fig. 5. The Boolean



1 case ST WAIT FOR ESTOPIn2:
2 Ready = true;
3 S EStopOut = false;
4 Error = false;
5 DiagCode = 0x8004;
6 if (!Activate)
7 currState = ST IDLE;
8 if (S EStopIn && !S AutoReset)
9 currState = ST WAIT FOR RST2;

10 if (S EStopIn && S AutoReset)
11 currState = ST SAFETY OUTP EN;
12 break;

1 case ST WAIT FOR ESTOPIn2:
2 Ready = true;
3 S EStopOut = false;
4 Error = false;
5 DiagCode = 0x8004;
6 if (!Activate)
7 currState = ST IDLE;
8 if (S EStopIn && !S AutoReset)
9 currState = ST WAIT FOR RST2;

10 if (S EStopIn && S AutoReset)
11 currState = ST RST ERR2;
12 break;

Fig. 4. Emergency stop C implementation; correct(left) and erroneous (right)

output err is raised to true whenever the specification is falsified by the monitor.
The sequential process p reset takes care of initialization of the involved registers
and the combinatorial process p observer logic implements the actual observer
for ψ3. We again applied a random input pattern and revealed the erroneous
state transition. For example, the sequence S1 � S2 � S6 � S7 � S9 � S6 was
shown (by the observer) to be conflicting with specification ψ3.

4.3 Offline Runtime Verification

To conclude the example, we also applied our offline approach to the emergency
stop example. We thus synthesized a Java class serving as monitor and used
the event logger of the hardware monitor unit to offer state updates δ to the
host. Likewise, the host application was also able to reveal the erroneous state
transition. However, offline runtime verification requires a host computer to be
present, whereas our online approach is a self-contained hardware approach.

5 Related Work

As our approach supports software as well as hardware-based monitoring function-
ality, we categorize related work into software- and hardware-based approaches.

Software-based monitoring The commercial tool Temporal Rover [8]
allows to check future and past time temporal formulae using instrumentation of
source code. Basically, the tool is a code generator that supports Java, C, C++,
Verilog or VHDL; properties to be checked are embedded in the comments of the
source code. The respective property checks are then automatically inserted into
the code, compiled, and executed.

Academic tools with automated code instrumentation capabilities are the Java
PathExplorer (JPaX) [13], the Monitoring and Checking (MaC) framework [20],
and the Requirements Monitoring and Recovery (Rmor) [14] tool. JPaX and
MaC facilitate automated instrumentation of Java bytecode; upon execution,
they send a sequence of events to an observer. JPaX additionally supports



1 library ieee ;
2 use ieee. std logic 1164 .all ;
3

4 entity FORMULA PSI 3 is
5 generic (
6 ATOMICS LEN : positive := 2;
7 SUBFORMULAS LEN : positive := 5);
8 port (
9 clk : in std logic ;

10 reset : in std logic ;
11 atomics : in std logic vector (ATOMICS LEN−1 downto 0);
12 err : out std logic );
13 end FORMULA PSI 3;
14

15 architecture behaviour of FORMULA PSI 3 is
16 signal pre reg, pre reg next : std logic vector (SUBFORMULAS LEN−1 downto 0);
17 signal now reg, now reg next : std logic vector (SUBFORMULAS LEN−1 downto 0);
18 signal atomics reg : std logic vector (ATOMICS LEN−1 downto 0);
19

20 begin
21

22 p observer logic : process(pre reg, now reg, atomics reg)
23 variable pre reg next v : std logic vector (SUBFORMULAS LEN−1 downto 0);
24 variable now reg next v : std logic vector (SUBFORMULAS LEN−1 downto 0);
25 begin
26 pre reg next v := pre reg ;
27 now reg next v := now reg;
28

29 now reg next v(4) := atomics reg(0);
30 now reg next v(3) := not now reg next v(4) and pre reg next v(4);
31 now reg next v(2) := atomics reg(1);
32 now reg next v(1) := now reg next v(2) and not pre reg next v(2);
33 now reg next v(0) := not now reg next v(1) or now reg next v(3);
34 pre reg next v := now reg next v;
35

36 pre reg next <= pre reg next v;
37 now reg next <= now reg next v;
38 end process;
39

40 p reset : process (clk, reset)
41 variable pre reg v : std logic vector (SUBFORMULAS LEN−1 downto 0);
42 begin
43 if reset = ’1’ then
44 pre reg v(4) := atomics(0);
45 pre reg v(3) := ’0’;
46 pre reg v(2) := atomics(1);
47 pre reg v(1) := ’0’;
48 pre reg v(0) := not pre reg v(1) or pre reg v (3);
49 pre reg <= pre reg v;
50 now reg <= (others => ’0’);
51 atomics reg <= (others => ’0’);
52 elsif rising edge (clk) then
53 pre reg <= pre reg next;
54 now reg <= now reg next;
55 atomics reg <= atomics;
56 end if;
57 end process;
58

59 err <= not now reg(0);
60

61 end behaviour;

Fig. 5. The auto-generated observer VHDL code for ψ3



concurrency analysis. Rmor provides a natural textual programming notation
for state machines for program monitoring and implements runtime verification
for C code.

Hardware-based monitoring Tsai et al. [33] describe a noninterference hard-
ware module based on the MC68000 processor for program execution monitoring
and data collection. Events to be monitored, such as function calls, process
creation, synchronization, etc. , are predetermined. With the support of a replay
controller, test engineers can replay the execution history of the erroneous pro-
gram in order to determine the origin of the defect. The Dynamic Implementation
Verification Architecture (DIVA) exploits runtime verification at intra-processor
level [1]. Whenever a DIVA-based microprocessor executes an instruction, the
operands and the results are sent to a checker which verifies correctness of the
computation; the checker also supports fixing an erroneous operation. A hardware-
related tool called BusMop [27] is based on the Monitor Oriented Programming
(MOP) framework [6]. In essence, BusMop is a hardware-monitoring device
which sniffs traffic transmitted between COTS embedded components attached
to a PCI/PCI-X bus, thereby acting as advanced bus guardian. Similar to our
approach, the monitor and the system under verification are executed within an
FPGA. The specification is translated by the MOP framework into a hardware
description, which is then synthesized into a netlist and loaded into dynamically
reconfigurable blocks of the FPGA. Whereas BusMop is designed to monitor data
transmissions through a PCI interconnection for large-scale embedded systems,
our framework monitors embedded software at a fine level of granularity.

The work of Brörkens and Möller [5] is akin to ours in the sense that they
also do not rely on code instrumentation to generate event sequences. Their
framework, however, targets Java and connects to the bytecode using the Java
Debug Interface (JDI) so as to generate sequences of events.

Lu and Forin [25] present a compiler from Property Specification Language
(PSL) to Verilog, which translates a subset of PSL assertions about a software
program (C in their approach) into hardware execution blocks for an extensible
MIPS processor, thus being the first method that allows transparent runtime
verification without altering the program under investigation. The synthesized
verification unit is generated by a property rewriting algorithm proposed in [32].
Atomic propositions are restricted to allow only a single comparison operator,
whereas our approach supports more complex relations among memory values
within our hardware unit, thus yielding greater flexibility in the specification.

Observer synthesis The idea of generating Java code as observers for ptLTL
is due to Havelund and Roşu [15]. A comparable approach based on alternating
automata for future time LTL was described by Finkbeiner and Sipma [11].



6 Conclusion and Future Challenges

This paper advocates runtime verification of microcontroller code without code
instrumentation. Our method supports runtime checks for ptLTL during execution
of the code, thereby evading the problem of errors introduced by translation from
a high-level language into binary code. Such errors are likely to go unnoticed
by conventional approaches for high-level representations. The framework itself
relies on a hardware monitor unit and synthesized observers, thereby making
code instrumentation dispensable. The example discussed in this paper is based
on randomly generated inputs, which is insufficient in practical applications. Test-
case generation for binary code, though orthogonal to the techniques described in
this paper, thus remains a topic of interest. For this task, we will further investigate
a combination of SAT solving and backward abstract interpretation [4, 30].
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6. Chen, F., Roşu, G.: MOP: An efficient and generic runtime verification framework.
In: OOPSLA. pp. 569–588. ACM (2007)

7. Colin, S., Mariani, L.: Model-Based Testing of Reactive Systems, chap. Run-Time
Verification, pp. 525–555. Springer (2005)

8. Drusinsky, D.: The temporal rover and the ATG rover. In: 7th Intl. SPIN Workshop
on SPIN Model Checking and Software Verification. pp. 323–330. Springer (2000)

9. Eide, E., Regehr, J.: Volatiles are miscompiled, and what to do about it. In:
EMSOFT. pp. 255–264. ACM (2008)

10. Emerson, E.A.: Handbook of theoretical computer science (vol. B), chap. Temporal
and modal logic, pp. 995–1072. MIT Press (1990)

11. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24, 101–127 (March 2004)

12. Flexeder, A., Mihaila, B., Petter, M., Seidl, H.: Interprocedural control flow recon-
struction. In: APLAS. LNCS, vol. 6461, pp. 188–203. Springer (2010)
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