
Automated Test-Trace Inspection for
Microcontroller Binary Code

Thomas Reinbacher1, Jörg Brauer2, Daniel Schachinger1, Andreas Steininger1,
and Stefan Kowalewski2

1 Embedded Computing Systems Group, Vienna University of Technology, Austria
2 Embedded Software Laboratory, RWTH Aachen University, Germany

Abstract. This paper presents a non-intrusive framework for runtime
verification of executable microcontroller code. A dedicated hardware
unit is attached to a microcontroller, which executes the program under
scrutiny, to track atomic propositions stated as assertions over program
variables. The truth verdicts over the assertions are the inputs to a
custom-designed µCPU unit that evaluates past-time LTL specifications
in parallel to program execution. To achieve this, the instruction set of
the µCPU is tailored to determining satisfaction of specifications.

1 Introduction

Real software runs on real machines. Ideally, verification should thus take place
on the execution level. A main advantage of this approach is that it eliminates the
need for compiler correctness, which is extremely difficult to establish. However,
analyzing programs on the machine-level poses other challenges, even more so
in the embedded systems domain where there is heavy interaction between the
software and its environment. As a consequence, in practice, only certain parts
of the program may be backed up with a formal correctness argument. For the
remaining part of the program, testing is often the technique of choice to increase
confidence in correctness of the program without proving absence of errors.

Testing is based on a guess-and-check paradigm: one (a) guesses a configu-
ration of the program’s inputs (the test-case) and (b) checks the result of the
individual test runs. While the former can — to a large extent — be auto-
mated by automated test-case generation [1], the latter often turns out to be
a time-consuming and manual activity, remaining a core task of test engineers.
With respect to test automation, it is therefore highly desirable to automati-
cally evaluate the validity of a single test trace when running in the intended
execution environment. Runtime verification further ties verification to testing:
The intended behavior of the system is described in some suitable temporal logic
formula, the validity of which is monitored dynamically, while the test case is
executed. Yet, in the context of safety-critical embedded systems, the application
of runtime verification on execution level is hampered by the fact that code
instrumentation — which is required by traditional techniques — is likely to
affect certain real-time and memory constraints of the system. This is specifically
serious in applications where the design tightly fits into the available resources.

In previous work [8], we synthesized VHDL code representing a monitor for a
past-time LTL [4] (ptLTL) formulae. The truth values of the atomic propositions
(APs) as well as the validity of the specification were evaluated in a pure hardware
solution. The approach proves feasible in a static setting, where one checks a
fixed set of properties at every run of the program, e.g., after the product is
shipped. However, in a dynamic setting such as testing, the specification is likely
to change with every single test execution. Since generating a hardware observer
from VHDL requires invoking a logic synthesis tool (which may take several
minutes), this approach is infeasible for testing. To make runtime verification
amenable to real-world testing, this paper proposes a more general approach that
relies on a µCPU to determine satisfaction of ptLTL properties on-the-fly. APs
are (still) evaluated by a dedicated, configurable hardware unit.

2 Runtime Verification for Microcontroller Binary Code

This section presents our framework for non-intrusive runtime verification of
microcontroller binary code (see Fig. 1). APs are evaluated in a component called
the atChecker, whereas satisfaction of a ptLTL formula is determined by a µCPU
unit, the µMonitor. A control unit wiretaps the memory of the microcontroller
that executes the software under investigation. To illustrate our (mostly generic)
approach, we employ an off-the-shelf Intel MCS-51 microcontroller IP-core for our
experiments. Since verification is performed on the binary program, this approach
does not impose any constraints on the high-level implementation language.

Specification Our framework supports specifications in ptLTL augmented with
monitoring operators [7]. A GUI-based host application compiles a specification
(consisting of a set of formulae) into a pair 〈Π, C〉, where C is a configuration
for the atChecker and Π is a set of native programs for the µMonitor. To do
so, we instantiate an algorithm proposed by Havelund and Roşu [7] to generate
observers for ptLTL. If available, we parse debug information generated during
compilation to relate program symbols to memory locations on the microcontroller.
This allows us to use high-level program symbols in specifications, for example,
ψ : ↑ (foo = 20)⇒ bar ≤ 50; where foo and bar are variables.

Evaluating Assertions On-The-Fly The atChecker supports a subclass of
two-variable inequalities, namely those of the form α ·m1 + β ·m2 ./ C where
α, β ∈ {0,±2n |n ∈ N}, m1,m2 are locations within RAM, ./ ∈ {<,>,≤,≥,=
, 6=}, and C ∈ Z is a constant. These assertions are easily evaluated in hardware
using shifters and adders. One unit is used for each AP of the specification.

Evaluating ptLTL specifications The µMonitor is a non-pipelined, RISC-
based microcomputer featuring an instruction set that supports sequential evalu-
ation of ptLTL specifications. It has separate address spaces for program and
data memory, i.e., represents a Harvard architecture. The data memory consists

Atomics
FIFO

Atomics
FIFO

Atomics
FIFO

atChecker

+

inc Program
Memory

Πψ0 .. Πψn

C
o
n
tr

o
l

U
n
it

U
S
B

In
st

ru
ct

io
n

D
ec

o
d
er

B
it

M
em

o
ry

p
n

..
p
re

..
p
0

q n
..

n
ow

..
q 0

Addr Mux

L
o
g
ic

a
l

U
n
it

Op Mux

&

‖
¬

verdict
X | ×
πt|=ψi?

Data interface •

I/O
CPU

(e.g. 8051)

RAM

PROM Environ-
ment

Operands
register
& Mux

Shifter

Shifter

Arithm.
unit

add/subb

Compare
=, 6=,≤
≥, <,>

AP(i)

PC

offset

C

Π

πt

Fig. 1. µMonitor (top), atChecker (bottom right), and the SUT (bottom left)

of two registers, one holding the evaluations (true, false) of all subformulae of
the formula ψ in the current execution cycle q[0 . . . n] and one the results of the
previous cycle p[0 . . . n]. All bits in the data memory are directly addressable. The
program memory, in turn, is partitioned into n sections, each holding a program
πψ ∈ Π compiled from ψ. The host computer selects an individual program by
setting an offset that is added to the current program counter. This easily allows
to change the specification on-the-fly, e.g., whenever a new test-case is loaded.

Each program πψ is executed in cycles. A cycle starts with the first address
belonging to πψ and ends when the last instruction was executed. At the end of a
cycle, the verdict is updated to indicate whether ψ holds up to the current state
of the program. The start of a cycle is triggered whenever any of the APs change
their truth values. To illustrate, consider again ψ : ↑ (foo = 20)⇒ bar ≤ 50. A
cycle of πψ is triggered iff [foo = 20] or [bar ≤ 50] toggle their truth values.

The instruction set features 16 opcodes to handle the ptLTL operators,
where each opcode is three bytes long. An instruction decoder allows to address
individual bits in the data memory and set the operator for the logical unit. A
multi-way multiplexer (the logical unit) connects bits, originating from either
p[0 . . . n] or q[0 . . . n], with a Boolean operator op ∈ {¬,∧,∨} and transfers the
result back to memory. The whole framework results in an efficient hardware
design. The µMonitor unit synthesizes down to 367 logic cells (with fmax =
145 MHz) and a single atChecker unit to 290 logic cells (with fmax = 80 MHz) on
an Altera Cyclone III EP3C16 FPGA device. By way of comparison, the Intel
MCS-51 core consumes roughly 4000 logic cells on the same device and runs at
clock speed of up to 16 MHz.

8051 micro-
controller

M1 M2

Fan

shaft

ϑ2ϑ1

ϑ2

ϑ1

ϑ2 < Θ2

ϑ1 < Θ1

p1

q1

p2

q2

|ϑ
1 −
ϑ
2 | ≤

∆
m
ax

SINT8 temp1, temp2, fanOn;
...
void main(){

while(true) controlLoop();
}
void controlLoop(){

if ((temp1>T1)||(temp2>T2)){
fanOn = controlAlgo();
...
setCooling(fanOn);

}
...

}
void updateTemp(){

temp1 = readTemp(M1);
temp2 = readTemp(M2);

}

Fig. 2. Application (left), specification (mid), and the source code (right)

3 Worked Example

To exemplify our framework, we turn to an application in industrial automation
with the following specification: “The program under scrutiny is a digital controller
implementation controlling the temperature of two DC motors M1 and M2 by
driving a fan. The motors have a maximum operating temperature Θ1 and Θ2,
respectively. The target application continuously reads the current operating
temperatures ϑ1 and ϑ2. The applications invokes cooling whenever either ϑ1 >
Ton1

or ϑ2 > Ton2
. To avoid damage of the motors along with functional deficiency,

the fan needs to be turned on before the temperature of the motors reaches their
critical temperature. Both motors operate on the same shaft, thus, an additional
sanity check is that the absolute temperature difference |ϑ1 − ϑ2| remains within
∆max, otherwise, we could assume that one of the motors is blocking while the
other needs to apply an unusually high torque.”

The implementation consists of approx. 250 lines of C (compiled with Keil
µVision3). An outline of the code structure is shown in Fig. 2 (right). The
function updateTemp() is periodically called from a timer interrupt, whereas
controlAlgorithm() holds the controller implementation. Intuitively, the different
temperature bounds describe four hyper-planes as shown in Fig. 2 (mid). Consider
the temperature pattern from p1 to q1 . The controlLoop turns on the cooling in
p1 after one of the thresholds is reached. After returning from controlAlgorithm()
and turning on the fan, the temperatures are already at q1 , violating the
temperature requirement of M1. However, the pattern from p2 to q2 is valid
wrt. the specification as the temperature curve never leaves the hatched area until
the fan is turned on. It is thus straightforward to come up with the specification:

ψ : Inv(|ϑ1 − ϑ2| ≤ ∆max)
∧

↑ (fanOn = #F ON)⇒ [ϑ1 > Ton1
∨ ϑ2 > Ton2

; ϑ1 ≥ Θ1 ∨ ϑ2 ≥ Θ2)s

The symbols ϑ1 and ϑ2 in ψ refer to the variables temp1 and temp2. ψ requires
that: (a) The absolute temperature difference between M1 and M2 shall never

be greater than ∆max and (b) whenever the fan is turned on then one of the
motor temperatures exceeded its threshold in the past, and since then none of
the temperatures exceeded its critical temperature. Inv stands for invariant, i.e.,
holds in every state, ↑ means rising (false in the previous state but true in the
current), and [p; q)s is the strong interval operator [7] (q was never true since
the last time p was observed to be true, including the state when p was true).
The bounds are set to ∆max = 40◦C, Ton1

= 30◦C, Ton2
= 35◦C, Θ1 = 100◦C,

and Θ2 = 90◦C. For ψ, the host application generates a program consisting of 13
instructions for the µMonitor and a configuration to evaluate the 7 APs of ψ for
the atChecker. The application as well as the monitor execute at full clock rate.

4 Concluding Discussion

This paper presents a custom-designed µCPU unit for non-intrusive runtime
monitoring of ptLTL. The µCPU as well as hardware circuits for checking APs are
wiretapped to an FPGA running the target hardware. The force of this approach is
that the µCPU can be reprogrammed dynamically, depending on the specification
to be checked, whereas previous approaches evaluated formulae using fixed
hardware circuits, which is clearly not as flexible. In contrast to software-based
solutions such as Temporal Rover [3], JPaX [5], or Rmor [6], our framework
does not require instrumentation. Existing hardware-based approaches [2, 9]
require sophisticated monitoring devices, whereas our framework simply wiretaps
the microcontroller’s memory on an FPGA. Future work will be the integration
of our framework with binary code analysis frameworks that generate the actual
test cases, rather than using randomly generated executions as done currently.

References

1. Belinfante, A., Frantzen, L., Schallhart, C.: Tools for test case generation. In: Model-
Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 67–76. Springer (2005)

2. Chen, F., Roşu, G.: MOP: An efficient and generic runtime verification framework.
In: OOPSLA. pp. 569–588. ACM (2007)

3. Drusinsky, D.: The temporal rover and the ATG rover. In: SPIN. pp. 323–330.
Springer (2000)

4. Emerson, E.A.: Handbook of theoretical computer science (vol. B), chap. Temporal
and modal logic, pp. 995–1072. MIT Press (1990)

5. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Form. Methods Syst. Des. 24(2), 189–215 (2004)

6. Havelund, K.: Runtime verification of C programs. In: TestCom/FATES. pp. 7–22.
Springer (2008)

7. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: TACAS. pp.
342–356. LNCS, Springer (2002)

8. Reinbacher, T., Brauer, J., Horauer, M., Steininger, A., Kowalewski, S.: Past time
LTL runtime verification for microcontroller binary code. In: FMICS (2011)

9. Tsai, J.J.P., Fang, K.Y., Chen, H.Y., Bi, Y.: A noninterference monitoring and replay
mechanism for real-time software testing and debugging. IEEE Trans. Softw. Eng.
16, 897–916 (1990)

	Automated Test-Trace Inspection for Microcontroller Binary Code

