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Setting the Scene Binary Code Verification @ms
m‘retglng

@® Embedded software mostly not in plain ANSI C

= side effects, embedded assembler, direct hardware register
access

® Who verified your compiler?

= GCC 4.3.5 has 8M loc (2.5M C, 1.5M C++, 1.5M Java, 60k ASM ... )

= Good SW has about 1 error in 250 loc — %’\6’ = 33k flaws

= Proving correctness of the compiler is typically infeasible

= Even translation validation is hard (and not really widespread
in industry)

® No source code required (closed source libraries)

@ Binary code is as close as possible to the actual execution



Setting the Scene Il Runtime Verification (RV)

Testing is based on a guess & check paradigm
= Guess a configuration of the program’s input
= Check the result of an individual test run

RV bridges the gap between rigorous software verification and
dynamic testing

Intuition for our approach
= Use formal methods to derive a set of test cases (guess)

= Use RV to check validity of test cases during execution
(check)
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CevTes Approach

ed

@ Use Al to derive an over-approximation of the reachable states

® Find program locations where the specification is violated

@® Backward analysis derives counterexamples (test cases)

O Interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings
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CevTes Approach & RV So far @ms
m‘relglng

Pure hardware approach [FMICS'11] for a static setting v’
@ Non instrumenting approach

® Specification in ptLTL, auto-generate observers
[Havelund&Rosu; TACAS'02]

© Observers are generated as VHDL entities
O Logic synthesis tool translates VHDL entities into a netlist

@ Observer runs in parallel to microcontroller (both on FPGA)

However
= In a dynamic setting, specifications may change frequently

= A single run of the synthesis tool may take several minutes ®

~» Evaluate ptLTL formulae with a uCPU in SW pMonitor
~~ Evaluate atomic propositions in HW atChecker



Specification ptLTL Observer @ms
m‘retglng

Past time LTL
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Monitoring operators
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Synthesize
® A binary program IT for the pMonitor ~~ evaluates ptLTL
@® A configuration C for the atChecker ~+ evaluates AP



Evaluate Atomic Propositions TVPI constraints ystems
mJ:etglng

AP are a form of two-variable-per-inequality constraints

a-m+B-maC

where:
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Evaluate Atomic Propositions

Invariant Checker

Evaluation of TVPI constraints results in fairly efficient HW units

= Ripple carry adder: Add((a), (b),c)

= Subtraction of (a) — (b) is equivalent to Add({a), (b),1)
= Relational operators are similar
= Sensing the memory interface of the SUT (target
microcontroller)
RRAAI\I/\l/Ibvl\J/Z ) Operands ﬂ Shifter N Arithm. Compare
register & unit |- =,#, <
conrgt?:r:i(t3 ) Mux m/ add/subb 2 <>
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System Overview
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System Overview
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Intel MCS-51 IP Core
runs SUT natively



System Overview
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System Overview
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Implementation Details

FPGA: Altera Cyclone Il EP3C16

Unit | LC | fmax
uMonitor 367 | 145 MHz
atChecker 290 80 MHz

8051 IP-Core | 4000 | 16 MHz

uMonitor
= Instruction set features 16 opcodes to handle full ptLTL
= Each opcode is 3 bytes long

8051 IP-Core
= Unmodified, industrial 8051 IP-Core

[www.oreganosystems. at]
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Example Industrial Automation ystemns
m‘retglng

Digital controller implementation
= Temperature control of two DC motors M; and M,
= Motors have max operating temperature, i.e., @1 and O,
= Sanity check |81 — 02| < dmax
= SUT

- continuously reads operating temperatures, i.e., %1 and 9,
- invokes cooling system when 01 > Top, or 2 > Top,

‘ 8051

microcontroller

9 Fan 9

shaft



Example Industrial Automation
1 SINT8 templ, temp2, fanOn;
. .
3 void main(){ l
4 while(true) controlLoop();
5 ¥ < ©y
6 void controlLoop(){
7 if ((temp1>T1)||(temp2>T2)){
8 fanOn = controlAlgo();
9

HoRoR
N B O

s.é.tCooling(fanOn);

13 9y
14 void updateTemp(){ i8N

15 templ = readTemp(M1); &3/

16 temp2 = readTemp(M2); J Up < Oy

17 ﬂ% R <«

~ 250 lines of Keil uVision3 C-code

lp: Inv(|l91—l92| SAmax) /\
1 (fanOn = #F_ON) = [01 > Ton, V82 > Tony; 91 > 01V 92 > Or)s

= atChecker will trace state changes of fanOn, templ, temp2
= pMonitor will check the validity of ¢

~ Vis a valid wrt. to ¢
> Xis invalid wrt. to ¥, hence, detected by yMonitor
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Conclusion & Future Work @ms
Non-intrusive monitoring framework for ptLTL a0

= Atomic propositions evaluated in hardware

= Validity of ptLTL specifications determined by a uCPU
(#Monitor)

= uMonitor runs in parallel to SUT
= ptLTL specifications are synthesized into #Monitor programs

= SUT is an unmodified off-the-shelf IP core running the binary
code under investigation

More recent and future work
= CFG recovery a priori instead of on-the-fly (see EMSOFT'11)
= Checking real-time properties (in progress)

= Orthogonal but related future work: automatic test-case /
trace generation

CEVTES < Framework for Testing / RV of Embedded Software
[http://ti.tuwien.ac.at/ecs/research/projects/cevtes]
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