Automated Test-Trace Inspection for
Microcontroller Binary Code

Thomas Reinbacher?, Jorg Brauer?, Daniel Schachingerl,
Andreas Steininger!, and Stefan Kowalewski®

1 Institute of Computer Engineering
Vienna University of Technology, Austria

2 Embedded Software Laboratory
RWTH Aachen University, Germany

TECHNISCHE RHEINISCH-

UNIVERSITAT TWEE(:SJm\s%a%HE

WIEN HOCHSCHULE
AACHEN

Vienna University of Technology

ed

1

Setting the Scene Binary Code Verification @ms
m‘retglng

@® Embedded software mostly not in plain ANSI C

= side effects, embedded assembler, direct hardware register
access

® Who verified your compiler?

= GCC 4.3.5 has 8M loc (2.5M C, 1.5M C++, 1.5M Java, 60k ASM ...)

= Good SW has about 1 error in 250 loc — %’\6’ = 33k flaws

= Proving correctness of the compiler is typically infeasible

= Even translation validation is hard (and not really widespread
in industry)

® No source code required (closed source libraries)

@ Binary code is as close as possible to the actual execution

Setting the Scene Il Runtime Verification (RV)

Testing is based on a guess & check paradigm
= Guess a configuration of the program’s input
= Check the result of an individual test run

RV bridges the gap between rigorous software verification and
dynamic testing

Intuition for our approach
= Use formal methods to derive a set of test cases (guess)

= Use RV to check validity of test cases during execution
(check)

ed

CevTes Approach

ed

@ Use Al to derive an over-approximation of the reachable states

® Find program locations where the specification is violated

@® Backward analysis derives counterexamples (test cases)

O Interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings

Inputs —

(5]

[|

Analysis Deployment / FPGA ——
abstract £l g
; S | test-case ® RV target
inter- -5 generator | | v i IP core
. -+
pretation | 2 4] unit
= o=

i

i

liumps]

[verdicts]

— [feedback]J

CevTes Approach & RV So far @ms
m‘relglng

Pure hardware approach [FMICS'11] for a static setting v’
@ Non instrumenting approach

® Specification in ptLTL, auto-generate observers
[Havelund&Rosu; TACAS'02]

© Observers are generated as VHDL entities
O Logic synthesis tool translates VHDL entities into a netlist

@ Observer runs in parallel to microcontroller (both on FPGA)

However
= In a dynamic setting, specifications may change frequently

= A single run of the synthesis tool may take several minutes ®

~» Evaluate ptLTL formulae with a uCPU in SW pMonitor
~~ Evaluate atomic propositions in HW atChecker

Specification ptLTL Observer @ms
m‘retglng

Past time LTL

Y u= true | false | AP | —¢p | pey
Op | op [Ly [¢ S5 ¢ |1l’w1l7

Monitoring operators

o= 1Y Lo [pe)s | [9w

Approach
| binary |
Formula Code /wl 7p7ro7g[aimilil o %
parser generator \ﬁ: AP *: 5‘5’
. configC 1

Synthesize
® A binary program IT for the pMonitor ~~ evaluates ptLTL
@® A configuration C for the atChecker ~+ evaluates AP

Evaluate Atomic Propositions TVPI constraints ystems
mJ:etglng

AP are a form of two-variable-per-inequality constraints

a-m+B-maC

where:
= a,f€{0,+£2"|ne N} my, my are locations within RAM
= e <, >, <, >, =, #) C € Z is a constant
my my
> >0 <5 6 - >0 <5 &
<16,\ < 16
N2 N N2 N
<5 <5 <=5 <5
\SAIG > ~ 16 (mo 1 x m <38)
>0 >0 >0 >0
T Ty m T Ty m
Ly >0 <5 & — >0 <5 &

Evaluate Atomic Propositions

Invariant Checker

Evaluation of TVPI constraints results in fairly efficient HW units

= Ripple carry adder: Add((a), (b),c)

= Subtraction of (a) — (b) is equivalent to Add({a), (b),1)
= Relational operators are similar
= Sensing the memory interface of the SUT (target
microcontroller)
RRAAI\I/\l/Ibvl\J/Z) Operands ﬂ Shifter N Arithm. Compare
register & unit |- =,#, <
conrgt?:r:i(t3) Mux m/ add/subb 2 <>

ed

—> atomic(i)

System Overview

le—

verdict
V| x
TeEYi?

AP())

Program |
M g .S ﬁ[Addr Mux}ﬂ f{Op Mux}—\
emory = =
3 (S NN \
Ml | | B AR RIRE
A o oy 2 g : 5
(] ; (0] o
= 2 s S
= | |
atChecker|—| Atomics? di o | ? e -
FIFO S ||
C o Tbawineace | %
Py Operands| Shifter Arithm. Compare
8(55% —>| | register unit =#,<
) & Mux | Y(shifter /| add/sub| >, <>

System Overview

le—

{Addrl Mux

Program s ({Op Mux}—\
Memory e
(O] < S
=] T || \
My 1 B el g
(s v £ 8 I o) verdict
2883 a
= gﬁ Wt)il/),'?
atChecker|—{ Atomics? di T? L -
i FIFO SHINY
pE
Operands| Shifter Arithm. Compare
= | register unit = #,< AP(i)
& Mux \{STfter]/ add/subl > <>

Intel MCS-51 IP Core
runs SUT natively

System Overview

Program
Memory

p Moy My,

Instruction

>

atChecker

Atomics
FIFO

le—

{Addrl Mux

=)

f{Op Mux
< <
T || X
> 1 \ =
SRERIE c i
£) verdict
2883 a
= gﬁ Wt)il/),'?
7 ||| W a
ol o
(SRS
-
Operands| Shifter Arithm. Compare
Pl | register unit = #,< AP(i)
& Mux \{STfter]/ add/subl > <>

atChecker

evaluates AP (TVPI constraints)

System Overview

Program g /—(Addr Mux)ﬂ /{Op Mux}—\
Memory S
8] c || =
3 o || \
My, 1 B el 1E
. : : < .
Ao £ g > verdict
g 8¢ 3 v | x
o =
- & T
atChecker [—| Atomics di o | ? L -
FIFO g8
T—J ptMonitor J
I _veyav!uat‘es ptLTL formulae
s L
Operands| Shifter Arithm. Compare
= | register unit = #,< AP(i)
& Mux | shifter T add/sub >, <>

Implementation Details

FPGA: Altera Cyclone Il EP3C16

Unit | LC | fmax
uMonitor 367 | 145 MHz
atChecker 290 80 MHz

8051 IP-Core | 4000 | 16 MHz

uMonitor
= Instruction set features 16 opcodes to handle full ptLTL
= Each opcode is 3 bytes long

8051 IP-Core
= Unmodified, industrial 8051 IP-Core

[www.oreganosystems. at]

13/1

Example Industrial Automation ystemns
m‘retglng

Digital controller implementation
= Temperature control of two DC motors M; and M,
= Motors have max operating temperature, i.e., @1 and O,
= Sanity check |81 — 02| < dmax
= SUT

- continuously reads operating temperatures, i.e., %1 and 9,
- invokes cooling system when 01 > Top, or 2 > Top,

‘ 8051

microcontroller

9 Fan 9

shaft

Example Industrial Automation
1 SINT8 templ, temp2, fanOn;
. .
3 void main(){ l
4 while(true) controlLoop();
5 ¥ < ©y
6 void controlLoop(){
7 if ((temp1>T1)||(temp2>T2)){
8 fanOn = controlAlgo();
9

HoRoR
N B O

s.é.tCooling(fanOn);

13 9y
14 void updateTemp(){ i8N

15 templ = readTemp(M1); &3/

16 temp2 = readTemp(M2); J Up < Oy

17 ﬂ% R <«

~ 250 lines of Keil uVision3 C-code

lp: Inv(|l91—l92| SAmax) /\
1 (fanOn = #F_ON) = [01 > Ton, V82 > Tony; 91 > 01V 92 > Or)s

= atChecker will trace state changes of fanOn, templ, temp2
= pMonitor will check the validity of ¢

~ Vis a valid wrt. to ¢
> Xis invalid wrt. to ¥, hence, detected by yMonitor

1

Conclusion & Future Work @ms
Non-intrusive monitoring framework for ptLTL a0

= Atomic propositions evaluated in hardware

= Validity of ptLTL specifications determined by a uCPU
(#Monitor)

= uMonitor runs in parallel to SUT
= ptLTL specifications are synthesized into #Monitor programs

= SUT is an unmodified off-the-shelf IP core running the binary
code under investigation

More recent and future work
= CFG recovery a priori instead of on-the-fly (see EMSOFT'11)
= Checking real-time properties (in progress)

= Orthogonal but related future work: automatic test-case /
trace generation

CEVTES < Framework for Testing / RV of Embedded Software
[http://ti.tuwien.ac.at/ecs/research/projects/cevtes]

16/1

