
Inferring Definite Counterexamples Through
Under-Approximation

Jörg Brauer1,∗ and Axel Simon2,∗∗

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Informatik 2, Technical University Munich, Germany

Abstract. Abstract interpretation for proving safety properties summa-
rizes concrete traces into abstract states, thereby trading the ability to
distinguish traces for tractability. Given a violation of a safety property,
it is thus unclear which trace led to the violation. Moreover, since part
of the abstract state is over-approximate, such a trace may not exist at
all. We propose a novel backward analysis that is based on abduction of
propositional Boolean logic and that only generates legitimate traces that
reveal actual defects. The key to tractability lies in modifying an existing
projection algorithm to stop prematurely with an under-approximation
and by combining various algorithmic techniques to handle loops finitely.

1 Introduction

Model checking has the attractive property that, once a specification cannot be
verified, a trace illustrating a counterexample is returned which can be inspected
by the user. These traces have been highlighted as invaluable for fixing the
defect [9]. In contrast, abstract interpretation for asserting safety properties
typically summarizes traces into abstract states, thereby trading the ability to
distinguish traces for computational tractability. Upon encountering a violation
of the specification, it is then unclear which trace led to the violation. Moreover,
since the abstract state is an over-approximation of the set of actually reachable
states, a trace leading to an erroneous abstract state may not exist at all.

Given a safety property that cannot be proved correct, a trace to the beginning
of the program would be similarly instructive to the user as in model checking.
However, obtaining such a trace is hard as this trace needs to be constructed by
going backwards step-by-step, starting at the property violation. One approach
is to apply the abstract transfer functions that were used in the forward analysis
in reverse [28]. However, these transfer functions over-approximate. Thus, a
counterexample computed using this approach may therefore be spurious, too.
However, spurious warnings are the major hinderance of many static analyses,
except those crafted for a specific application domain [11]. It has even been noted
that unsound static analyses might be preferable over sound ones because the
? Supported partly by DFG GRK 1298 and DFG EXC 89.

?? Supported by DFG Emmy Noether SI 1579/1.

number of false positives can be traded off against missed bugs, thereby delivering
tools that find defects rather than prove their absence [3].

Rather than giving up on soundness, we propose a practical technique to
find legitimate traces that reveal actual defects, thereby turning sound static
analyses into practical bug-finding tools. We use the results of an approximate
forward analysis to guide a backward analysis that builds up a trace from the
violation of the property to the beginning of the program. At its core, it uses
a novel SAT-based projection algorithm that has been adapted to deliver an
under-approximation of the transition relation in case the exact solution would
be too expensive to compute. Furthermore, assuming that the projection is exact,
if the intersection between a backward propagated state and the states of the
forward analysis is empty on all paths, the analysis has identified a warning as
spurious. Hence our analysis has the ability to both, find true counterexamples
and to identify warnings as spurious. To our knowledge, our work is the first to
remove spurious warnings without refining or enhancing the abstract domain.

One challenge to the inference of backward traces is the judicious treatment
of loops. Given a state s′ after a loop, it is non-trivial to infer a state s that
is valid prior to entering the loop. In particular, it is necessary to assess how
often the loop body needs to be executed to reach the exit state s′. This problem
is exacerbated whenever analyzing several loops that are nested or appear in
sequence. Our solution to this issue is to summarize multiple loop iterations in
a closed Boolean formula and to use iterative deepening in the number of loop
executions across all loops until a feasible path between s to s′ is found.
The practicality of our approach is based on the following technical contributions:

– We use an over-approximating affine analysis between the backward propa-
gated state s′ after the loop and the precondition s of the loop inferred by
the forward analysis to estimate the number of loop iterations. If an affine
relationship exists, we derive a minimum number of loop iterations that the
state s′ has to be transformed by the loop.

– We synthesize a relational Boolean loop transformer f2i , which expresses
2i executions of a loop, given f2i−1 . These loop transformers are then used
to construct fn for arbitrary n, thereby providing the transfer function to
calculate an input state from the given output state of the loop in log2(n)
steps for n iterations. This approach can also be applied to nested loops.

– We provide a summarization technique, which describes 0, . . . , 2n iterations
of a loop as one input/output relation. This method combines the Boolean
transfer functions f2n with a SAT-based existential elimination algorithm.
The force of this combination is that we can modify the elimination algorithm
to generate under-approximate state descriptions — any approximated result
thus still describes states which are possible in a concrete execution.

The remainder of the paper is structured as follows: After the next section
details our overall analysis strategy, Sect. 3 illustrates the three contributions
in turn. Section 4 details the modifications to the projection algorithm to allow
under-approximations which Sect. 5 evaluates in our implementation. Section 6
presents related work before Sect. 7 discusses possible future work and concludes.

2

x=min(x,200); r=2

x=max(x,0); r=1
S1

S2

S4

S5x<100

x≥100

x=x-r

x>0

x≤0
assert(x==0);

S3

S6

S7
S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =
{

x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S′
i =
{

x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S′′
i =
{

x
r

[101, 125]
2 ⊥ [101, 125]

2
[101, 125]

2
[1, 125]

2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program
with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed
in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect
the assumption with S8, leading to the refined assumption S′8 in Table 1. We
follow the flow backwards by applying the guard x ≤ 0 which has no effect on S′8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this
case S′8 conjoined with S5 yields an empty state, indicating that the chosen path
cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .

3

For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i and express the semantics of 0, . . . , 2i

iterations as ϕi+1 = ϕi ∨ ϕi ◦ f2i with ϕ0 being defined as the identity. For each
i = 1, . . ., we unroll all loops that we have encountered so far until we manage to
propagate the resulting state further backwards. For instance, in the example we
unroll the loop once by propagating the state S′8 backwards through the loop,
yielding S′7 = S′8 and S′6 = {x 7→ r − 1 ∈ [0, 1], r 7→ [1, 2]}. Applying the guard
x > 0 yields a non-empty S′5 = {x 7→ [1, 1], r 7→ [2, 2]}. However, S′5 u S2 = ∅
and S′5 u S4 = ∅ and hence the loop must be unrolled further. After five more
iterations, we find S′′5 = ϕ5(S′5) = {x 7→ 2n− 1 ∧ n ∈ [1, 63], r 7→ 2} which has a
non-empty intersection with S4, leading to S′′4 = {x 7→ 2n− 1 ∧ n ∈ [51, 63], r 7→
2} = S′′3 = S′′0 , thereby providing a counterexample that violates the assertion.

Interestingly, the above construction can also be used to identify a warning
as false positive: If during the unrolling of a loop ϕi+1(S) |= ϕi(S) then further
unrolling does not add any new states. If propagating this fixpoint beyond a
certain point p in the program is impossible (it drops to bottom) then the warning
is spurious and the forward analysis lost precision between p and the assertion.

However, calculating ϕi can become very expensive and a fixpoint might
be impossible to obtain. The source of the complexity is the elimination of
existentially quantified variables that tie the input of a function to the output.
For instance, the Boolean formula (o = f2(i)) ≡ ∃t : (o = f(t) ∧ t = f(i))
introduces fresh variables t that must be removed in order to avoid exponential
growth of the formula when calculating f2n = fn ◦ fn. Further intermediate
variables are required in ϕi to express that the result is either o or t.

In order to reduce the cost of the calculation, we employ a simple pre-analysis
that infers a minimal number of loop iterations 2m that are required to proceed
past the initialization in the loop header. In case m > 0, we calculate the formula
fm ◦ ϕi−m that does not consider cases in which the loop exits in the first 2m

iterations and which is cheaper to calculate than ϕi for i ≥ m. Moreover, rather
than examining all ϕi with i ≥ m+1 at once, we fix i = 0 in fm◦ϕi−m for all loops
in the program. If no trace can be found, we retry for each i. The two heuristics
square with the observation that, usually, an error trace through a loop exists for
small k, unless a loop iterates m times where m is constant, which is addressed
by composing ϕi with fm. If calculating fn ◦ϕi−m is still too expensive, we apply
an algorithm that can under-approximate the elimination of the existentially
quantified variables. Once under-approximation is used, traces may be missed
and an inferred error cannot be shown to be a false positive. However, any trace
found using under-approximation is still a valid counterexample.

In summary, if loops must be unrolled, our approach uses an iterative deep-
ening approach where in each step the number of iterations that are considered
is doubled. It also applies a heuristic that unrolls a loop by n iterations if it is
clear that the loop cannot exit earlier. These techniques are applied in the next
section to eliminate false positives. For complex loops and many iterations, we
under-approximate the existential elimination in a well-motivated fashion. This
approach is detailed in the context of inferring counterexamples in Sect. 4.

4

1 unsigned int l og2 (unsigned char c) {
2 unsigned char i = 0 ;
3 i f (c==0) return 0 ; else c−−;
4 while (c > 0) {
5 i = i + 1 ;
6 c = c >> 1 ;
7 }
8 a s s e r t (i <= 7) ;
9 return i ;

10 }

Fig. 2. Computation of the log2 of an unsigned integer c; even though the code is
correct, abstract interpreters based on domains such as convex polyhedra emit a warning

3 Eliminating False Positives

Consider the program in Fig. 2, which computes the logarithm to the base 2 of an
unsigned character c (a bit-vector of length 8) and stores the result in i. Clearly,
i should hold a value less than 8, which is formulated in terms of an assertion.
The assertion is valid, yet most abstract interpreters emit a warning; typical
domains fail to capture the relation between i, which is used in the assertion,
and c, which specifies the termination condition. We build towards our technique,
which proves the non-existence of a defective path, in three steps.

3.1 Concrete relational semantics in Boolean logic

To mark the warning as spurious, our analysis thus attempts to exclude all paths
that lead to a state satisfying the invariant ι = (0 ≤ i ≤ 255∧0 ≤ c ≤ 0) produced
by the forward analysis for line 8, and at the same time violates 0 ≤ i ≤ 7. We
express the concrete relational semantics of each block in the program in Boolean
logic. The values of i on entry and exit of each basic block are represented using
bit-vectors i and i′, respectively. Likewise, use bit-vectors c and c′ to represent c.
In the following, let 〈x〉 =

∑7
i=0 2i ·x[i] denote the unsigned value of a bit-vector

x, and let x[j] denote the jth bit of x. Let the notation J·K encode an arithmetic
constraint as Boolean formula. Then, fI(V ,V ′) := Ji′ = 0, c 6= 0, c′ = c − 1K
encodes the initialization block of the function over inputs V = {c, i} and outputs
V ′ = {c′, i′}. In a similar fashion, fL(V ,V ′) encodes the loop body:

fI(V ,V ′) =
{∧7

j=0 ¬i′[j] ∧
∨7

j=0 c′[j] ∧ ((
∧7

j=0 c[j]↔ (c′[j]⊕
∧j−1

k=0 c′[k])

fL(V ,V ′) =
{

(
∨7

j=0 c[j]) ∧ ¬c′[7] ∧ (
∧6

j=0 c′[j]↔ c[j + 1])∧
(
∧7

j=0 i′[j]↔ (i[j]⊕
∧j−1

k=0 i[k])

In order to find a path to a state that satisfies ι and violates the assertion, encode ι
in Boolean logic as JιK =

∧7
j=0 ¬c[j]. Furthermore, let J0 ≤ 〈i〉 ≤ 7K =

∧7
j=4 ¬i[j]

encode the assertion. The error state g(V) after the loop is given as:

5

g(V) = JιK ∧ ¬J0 ≤ 〈i〉 ≤ 7K
= J(0 ≤ 〈i〉 ≤ 255) ∧ (〈c〉 = 0)K ∧ J8 ≤ 〈i〉 ≤ 255K
= J(8 ≤ 〈i〉 ≤ 255) ∧ (〈c〉 = 0)K
=
∧7

j=0 ¬c[j] ∧
∨7

j=4 i[j]
We commence by testing the shortest trace to the erroneous state g(V), i.e.,
the trace going through the initialization block followed directly by an assertion
violation. This path is feasible if fI(V ,V ′)∧g(V ′) is satisfiable; since the formula
is unsatisfiable, this path cannot be part of a counterexample. A valid trace thus
traverses the loop n ≥ 1 times. One way to discover n, and thus a trace to the
loop-entry state ω = (〈i〉 = 0) ∧ (0 ≤ 〈c〉 ≤ 255), is to iteratively unroll the loop.
However, instead of composing n functions fL (each representing one iteration),
we infer an m ≤ n using affine abstraction and derive fm

L in log2(m) steps.

3.2 Lower bounds on the number of loop iterations

The first step of computing a lower bound on the number of loop iterations is
to abstract fL(V ,V ′) using a conjunction of affine equalities [16], which relate
symbolic bounds V `,u = {c`, cu, i`, iu} on entry of the block to symbolic bounds
V ′`,u = {c′`, c′u, i′`, i′u} on exit. Here, c`, cu, c′`, and c′u are bit-vectors representing
the lower and upper bounds of c, respectively; similarly for i. Applying the
abstraction scheme from [5, Sect. 3] yields the following system of affine equations:

z =
{
〈c`〉 = 0 ∧ 〈cu〉 = 2 · (〈c′u〉+ 1)− 1 ∧
〈i`〉 = 〈i′`〉 − 1 ∧ 〈iu〉 = 〈i′u〉 − 1

}
We transform g(V) to express affine constraints on the outputs V ′`,u by automat-
ically lifting the characterization over program variables to relations over range
variables (see [5, Sect. 3.2] for further details of this operation):

gaff(V ′) =
{
〈i′`〉 = 8 ∧ 〈i′u〉 = 255 ∧
〈c′`〉 = 0 ∧ 〈c′u〉 = 0

}
Then, applying z to gaff(V ′) yields

z(gaff(V ′)) =
{
〈i`〉 = 7 ∧ 〈iu〉 = 254 ∧
〈c`〉 = 0 ∧ 〈cu〉 = 1)

}
which, in turn, gives (7 ≤ 〈i〉 ≤ 254) ∧ 0 ≤ 〈c〉 ≤ 1). The intersection with the
precondition JωK yields ⊥; thus a single loop iteration does not suffice. In the next
iteration, we summarize two executions of the loop using relational composition
◦Lin of two affine systems z1 and z2. This amounts to renaming the outputs of
z1 and the inputs of z2 to the same temporary variables, and eliminating these
from the conjunction of both systems using projection [19, 27]. The projection,
in turn, has a straightforward implementation using Gauss elimination. In the
example, two iterations of the loop are characterized by:

z2 = z ◦Lin z =
{
〈c`〉 = 0 ∧ 〈cu〉 = 4 · (〈c′u〉+ 1)− 1 ∧
〈i`〉 = 〈i′`〉 − 2 ∧ 〈iu〉 = 〈i′u〉 − 2

}

6

Again, we get z2(gaff(V)) u JωK = ⊥. Likewise, compute:

z4 = z2 ◦Lin z2 =
{
〈c`〉 = 0 ∧ 〈cu〉 = 16 · (〈c′u〉+ 1)− 1 ∧
〈i`〉 = 〈i′`〉 − 4 ∧ 〈iu〉 = 〈i′u〉 − 4

}
z8 = z4 ◦Lin z4 =

{
〈c`〉 = 0 ∧ 〈cu〉 = 256 · (〈c′u〉+ 1)− 1 ∧
〈i`〉 = 〈i′`〉 − 8 ∧ 〈iu〉 = 〈i′u〉 − 8

}
Observe that

z8(gaff(V ′)) =
{
〈c`〉 = 0 ∧ 〈cu〉 = 255 ∧
〈i`〉 = 0 ∧ 〈iu〉 = 247

}
describes states that satisfy the invariant JωK prior to the loop. Thus, the minimum
number of loop iterations is 5 ≤ m ≤ 8. Using binary search, we determine which
zm is the first to satisfy JωK. This gives m = 8. Observe that, due to abstraction,
this bound is not necessarily exact (though it is in this example) in that any
counterexample trace must traverse the at least loop eight times.

3.3 Summarizing a Number of Iterations

We now face the task of efficiently calculating input-output behavior of eight
loop iterations as a Boolean formula f8

L which is later used to compute the
pre-image of f8

L subject to g(V). Analogous to the construction of composing
affine transformers, we incrementally double the number of iterations summarized
in a single formula, thus finessing the need to unroll the loop. Specifically, put:

f0
L(V ,V ′) = id(V ,V ′) f2

L(V ,V ′) = ∃V ′′ : f1(V ,V ′′) ∧ f1(V ′′,V ′)
f1

L(V ,V ′) = fL(V ,V ′) f4
L(V ,V ′) = ∃V ′′ : f2(V ,V ′′) ∧ f2(V ′′,V ′)

Each f i
L describes an input-output relation for exactly i applications of fL. To

eliminate V ′′ from the formulae, we apply a SAT-based projection algorithm [6].
This construction suffices to test JωK ∧ f8

L(V ,V ′) ∧ g(V ′) for satisfiability, i.e.,
to check if the erroneous state g(V ′) can be reached with exactly eight iterations
starting in JωK. If unsatisfiable, it is necessary to unroll the loop further. Again, we
construct a summary ϕi of m+ 2i iterations, where m is the lower bound on the
number of iterations. Then, ϕi describes all states reachable after m, . . . ,m+ 2i

iterations whereas fm+2i

L describes exactly m+ 2i iterations.

3.4 Summarizing a Range of Iterations

Formally, let ϕi(V) = ∃V ′ : ∃V ′′ : (
∨2i

j=0 f
j
L(V ,V ′))∧fm

L (V ′,V ′′)∧g(V ′′), that
is, erroneous states expressed over V ′′ being backpropagated m times around the
loop giving V ′, which are, in turn, j = 0, . . . , 2i times transformed into constraints
over V . Rather than recalculating each ϕi(V) from scratch, we compute ϕi(V)
based on the following inductive definition, allowing us to reuse ϕi−1(V) to
compute ϕi(V) and requiring only i instead of 2i steps:

ϕi(V) =
{
∃V ′ : fm

L (V ,V ′) ∧ g(V ′) : i = 0
ϕi−1(V) ∨ (∃V ′ : f2i(V ,V ′) ∧ ϕi−1(V ′)) : otherwise

7

1 unsigned int hamDist (int x , int y) {
2 unsigned int d = 0 ;
3 unsigned int v = x ˆ y ;
4 while (v != 0) {
5 d = d + 1 ;
6 v = v & (v − 1) ;
7 }
8 a s s e r t (d < 3 2) ;
9 return d ;

10 }

Fig. 3. Erroneous hamming distance calculation; the assertion in line 8 does not hold

Note that, due to monotonicity, there exists an i ≥ 0 with ϕi(V) |= ϕi−1(V). In
the example, since ϕ4(V) |= ϕ3(V) and ϕ3(V) ∧ JωK is unsatisfiable, we deduce
that no trace from JωK to the erroneous state g(V) exists that iterates more than
eight times. Hence, the warning emitted by the forward analysis is spurious. In
certain cases, calculating ϕi can become too costly, which is addressed next.

4 Finding Counterexamples

Although the iterative deepening heuristic reduces the complexity of the generated
formulae, exact state spaces cannot always be computed since calculating ∃V ′ :
f2i(V ,V ′) ∧ ϕi−1(V ′) may result in an exponentially sized formula. However, if
the aim is to only find a counterexample rather than eliminating false positives, an
under-approximation of the projection ∃V ′ : ψ suffices. In order to illustrate the
idea, consider Fig. 3 which presents a function to calculate the Hamming distance
of two integers x and y. Once more, we bit-blast the concrete semantics of both,
loop body and loop pre-condition. Here, ⊕ denotes the Boolean exclusive-or and
u is an auxiliary bit-vector that captures the intermediate value of v-1:

fI(V ,V ′) =
{∧31

j=0 ¬d′[j] ∧
∧31

j=0 v′[i]↔ x[j]⊕ y[j]

fL(V ,V ′) =
{

(
∧31

j=0 d′[j]↔ (d[j]⊕
∧j−1

k=0 d[k])) ∧ (
∨31

j=0 v[j])∧
(
∧31

j=0 v[j]↔ (u[j]⊕
∧j−1

k=0 u[k])) ∧ (
∧31

j=0 v′[j]↔ (v[j] ∧ u[j]))

As before, let ι = (〈v〉 = 0 ∧ 〈d〉 = >) describe the invariant derived at the
assertion which was inferred during the forward analysis and let ω = (〈d〉 =
0 ∧ 〈v〉 = 〈x〉 ⊕ 〈y〉) represent the state at loop entry. The erroneous state after
the loop is thus characterized as g(V) = JιK ∧

∨31
j=5 d[j] in Boolean logic.

4.1 Lower Bounds on the Number of Loop Iterations

Again, to compute a lower bound on the number of loop iterations required to
reach the erroneous state g(V) from the pre-condition V ′ defined by fI(V ,V ′),

8

we derive an abstraction of the loop transfer function fL(V ,V ′) in terms of a
conjunction of affine equalities. This operation gives:

z =
{
〈d`〉 = 〈d′`〉 − 1 ∧ 〈du〉 = 〈d′u〉 − 1

}
Note that v = v & (v - 1) is non-affine, hence the lack of an affine constraint
over v. We transform g(V) to express affine constraints on the outputs as per [5]:

gaff(V ′) =
{
〈d′`〉 = 32 ∧ 〈d′u〉 = 232 − 1

}
Applying z to gaff(V ′) yields z(gaff(V ′)) =

{
〈d`〉 = 31 ∧ 〈du〉 = 232 − 2

}
which,

in turn, gives 31 ≤ 〈d〉 ≤ 232 − 2. The intersection with the state ω = (〈d〉 =
0) that the forward analysis inferred for the loop entry yields J31 ≤ 〈d〉 ≤
232 − 2K u JωK = ⊥; thus a single loop iteration does not suffice. Following
the strategy discussed in Sect. 3.2, we compute z2(gaff(V ′)), z4(gaff(V ′)),
z8(gaff(V ′)), z16(gaff(V ′)), and z32(gaff(V ′)). It is only z32(gaff(V ′)) that sat-
isfies z32(gaff(V ′)) u JωK 6= ⊥. Consequently, the minimum number of loop
iterations is 17 ≤ m ≤ 32. Using binary search, we determine which zm is the
first to satisfy JωK. This gives m = 32 as the minimum number of iterations.

4.2 Under-Approximating a Range of Iterations

As in Sect. 3.3, we face the task of summarizing the execution of 32 consecutive
loop iterations. To find a backward trace, compute f0

L(V ,V ′) and f1
L(V ,V ′)

as before. Rather than computing f i
L(V ,V ′) exactly by enumerating all of the

projection space, we preempt the computation of f2
L(V ,V ′) = ∃V ′′ : f1(V ,V ′′)∧

f1(V ′′,V ′) prematurely after, say, 100 models have been enumerated (though
in our implementation, we have used a heuristic based on the structure of the
erroneous goal state g(V) rather than one that is based solely on the number
of models, see Sect. 5). This tactic yields a formula h2

L(V ,V ′) in CNF that
entails f2

L(V ,V ′). In other words, every of model h2
L(V ,V ′) is also a model

of f2
L(V ,V ′), i.e., the formula is easier to compute and under-approximates

f2
L(V ,V ′). Based on h2

L(V ,V ′), we compute h4(V ,V ′′) = ∃V ′′ : h2
L(V ,V ′′) ∧

h2
L(V ′′,V ′). Likewise compute h8

L(V ,V ′), h16
L (V ,V ′) and h32

L (V ,V ′). This
under-approximating strategy may decrease the size of the formulae exponentially.

4.3 Failing to Derive a Counterexample Trace

Suppose now that the summary of states ϕ0(V) = ∃V ′ : h32
L (V ,V ′)∧g(V ′) yields

a state description such that ϕ0(V)∧JωK is unsatisfiable and that ϕi(V) |= ϕ0(V)
for any i ≥ 1. Then the under-approximated transfer function h32

L (V ,V ′) is
insufficient to reach a loop-entry state. Hence, it is necessary to compute a greater
under-approximation ĥ32

L (V ,V ′) such that h32
L (V ,V ′) |= ĥ32

L (V ,V ′). Doing so
necessitates computing ĥ2

L(V ,V ′) such that h2
L(V ,V ′) |= ĥ2

L(V ,V ′); likewise
for ĥ4

L(V ,V ′), ĥ8
L(V ,V ′), ĥ16

L (V ,V ′), and ĥ32
L (V ,V ′). Based on the enlarged

under-approximation ĥ32
L (V ,V ′), we compute ϕ̂0(V) = ∃V ′ : ĥ32

L (V ,V ′)∧g(V ′),

9

which by monotonicity satisfies ϕ0(V) |= ϕ̂0(V). Suppose that ϕ̂0(V) ∧ JωK is
satisfiable, producing a model m |= ϕ̂0(V) ∧ JωK defined as follows:

m =

d[0] 7→ 0, d[1] 7→ 0, d[2] 7→ 0, d[3] 7→ 0, . . . , d[31] 7→ 0
x[0] 7→ 0, x[1] 7→ 1, x[2] 7→ 0, x[3] 7→ 1, . . . , x[31] 7→ 1
y[0] 7→ 1, y[1] 7→ 0, y[2] 7→ 1, y[3] 7→ 0, . . . , y[31] 7→ 0


This model entails that we successfully applied an under-approximate loop trans-
former to find a trace that executes 32 iterations. Bit-vectors x = 〈0101 . . . 01〉
and y = 〈1010 . . . 10〉 then indicate values that give a Hamming distance of 32 and
therefore violate the assertion. We have thus computed a definite counterexample.

5 Experiments

We have integrated the techniques described in this paper into the [mc]square
framework, which is written in Java. Several programs have been analyzed that
contain at least one loop each. The benchmarks shown in Tab. 2 include Wegner’s
bit-counting bit-cnt, the algorithm in Fig. 3 ham-dist, consecutive loops that
shift and add inc-lshift, the algorithm in Fig. 2 log, parity calculation parity,
parity mit, bit-reversal randerson, swapping of bytes swap and two interdepen-
dent, nested loops. The running times were obtained on a 2.4 GHz MacBook
Pro equipped with 4 GB of RAM. The programs are written in Instruction
List, a language used in Programmable Logic Controllers. The semantics of
these programs are translated into bit-vector relations, similarly to the examples
in Sect. 3 and Sect. 4. This translation and the calculation of the affine loop
transformers is written in Java using Sat4J. In none of the benchmark do these
calculations take more than 0.1s of the runtimes. The Boolean summarization
of loop iterations and the counterexample generation are implemented in C++
using MiniSat and Cudd. MiniSat frequently outperforms Sat4J by a factor
of 5-10 and was thus chosen for the more demanding transfer function synthesis.

Table 2 presents the timings for different analysis strategies. In the simplest
strategy, the post-condition state that violates the assertion g is propagated
through ϕn, the fixpoint of the input/output behavior of a loop. The times to
calculate the loop transfer function ϕn is given in column “Runtime (Full) / TF”
whereas propagating the state g through ϕn is given in column “Runtime (Full) /
CE”. Note that these two phases are interleaved and that the table presents the
accumulated times spent in each phase. The next sections discuss the impact of
pre-computing a minimal number of unrollings of a loop using affine abstractions
and of restricting the post-condition g to find a counterexample quicker.

5.1 Affine Estimation of Iterations

Inferring a lower bound on the number of loop iterations follows the algorithm
presented in [4, Sect. 3.2]. The affine relationships on the bounds of the variables
are inferred by asking for an initial solution to the loop transfer function f ,
yielding an assignment for the input and output variables. These assignments

10

form a linear equation system. By using cheap incremental SAT solving, different
assignments are queried and joined into the equation system by calculating the
affine hull which, in turn, reduces to Gauss elimination. This process will terminate
after at most n+ 1 queries to the SAT solver for n input/output variables. Each
query is rather trivial by current standards. If an affine relationship exists, a
minimal number of loop iterations can be calculated by composing the affine
transfer function repeatedly with itself using the ◦Lin operation which, again,
reduces to cheap Gauss elimination. Indeed, these steps contribute less than 0.1s
for each benchmark and we therefore omitted this phase from the table. All our
examples contain at least one variable that increases with each loop iteration
such that the estimated minimal number of iterations is exactly the number of
iterations it takes to exit the loop. This minimum number of iterations n allows
us to reduce the size of the formula by those conjuncts that model that the loop
may be exited after i < n unrollings, thereby alleviating the SAT solver from
proving this fact at the binary level. The speedup due to unrolling is minor (and
thus omitted from the table). Still, it shows that proving the exit condition in
MiniSat is more costly than Gauss elimination in Java and querying Sat4J.

5.2 Focussing the Search for Counterexamples

According to Table 2, the dominant part of the backwards analysis is the phase of
calculating and composing loop transformers, which hinges on the performance
of projection. In our experiments, we used model enumeration [6] and combined
it with BDDs so as to derive a quantifier-free CNF formula [22]. Cudd v2.4.2
was used since it offers direct support for enumerating a compact CNF formula.
Although this combination of data structures for representing Boolean formulae
during projection is the best we could find, there naturally exist problems that
result in large (intermediate) formulae. Indeed, McMillan [26], amongst others,
has observed that no Boolean structure (such as BDDs or CNF) exists which is
suitably small for all kinds of inputs; indeed, some problems exist where the CNF
is exponential in the size of the respective BDD, and vice versa. However, the
projection algorithm of [6] enumerates prime implicants, i.e., a Boolean formula
that contains a minimum number of literals, thereby covering as many models as
possible. This observation is relevant for the task of inferring counterexamples
(rather than eliminating false positives where the state space has to be enumerated
exhaustively): The algorithm enumerates prime implicants, which entailed that
stopping the projection early means that a maximum number of models of the
Boolean formula is propagated backwards. In principle, this means that the
largest number of states, which also has the simplest representation, is tried first
when resorting to under-approximation. Unfortunately, not every model of the
formula has the same probability to constitute a counterexample trace. Consider
the erroneous target g(V) = JιK ∧

∨31
j=5 d[j] from Sect. 4. The prime implicant

that captures the maximum number of states is d[31], i.e., the formula stating
that the most significant bit of d is set. This choice is in contrast to the intuition
that many errors are off-by-one errors and thus happened close to those numeric
values d ∈ [0, 31] that do not violate the assertion.

11

Benchmark # Instr. Runtime (Full) Runtime (Simp.)
TF CE TF CE

bit-cnt 26 4.1s 0.9s 0.4s 0.4s
ham-dist 19 4.8s 1.7s 0.8s 0.3s
inc-lshift 14 3.2s 2.7s 0.8s 0.6s
log 22 1.9s 1.3s 0.3s 0.3s
parity 28 8.3s 1.2s 1.2s 0.4s
parity mit 17 6.2s 2.6s 1.5s 1.2s
randerson 23 8.0s 2.4s 4.2s 0.6s
swap 15 5.9s 1.8s 0.9s 0.5s
loops 207 43.6s 8.0s 13.1s 5.8s

Table 2. Experimental results for PLC benchmarks

Hence, we employ a heuristic that constrains g(V) so that a sub-range of
target values are considered that lie close to the feasible state, extending the sub-
range to the next power of two iff the given under-approximation is insufficient
for finding a counterexample. This is a straightforward extension considering the
bit-level encodings of integer values. For the example in Sect. 4, this strategy is
applied as follows: The goal-state requires 25 ≤ 〈d〉 ≤ 232−1. In the first iteration,
our strategy tries to find values that satisfy 25 ≤ 〈d〉 ≤ 26. If no counterexample
is found, we proceed with 25 ≤ 〈d〉 ≤ 27, and so forth. This focusses model
enumeration to regions that are more likely to contain an actual trace. These
simpler models also reduce the runtime of computing projection. The difference
is shown in the columns “Runtime (Simp.)”, showing significant speed-ups to
find counterexamples compared to the “Full” column where g is used without
restrictions. Depending on the problems, counterexamples can be found up to 10
times faster by searching near states that do not violate the assertion.

5.3 Discussion

Using Boolean functions to represent a program state has obvious limits. However,
when trading the ability to remove false positives for the aspiration of finding
backwards traces, under-approximation can yield useful results, even on complex
loops. Interestingly, each prime implicant and each sub-range can be tested for
feasibility in parallel, which squares with the advent of multi-core processors and
may allow the search for counterexamples on larger computer clusters.

6 Related Work

A sound static analysis, usually expressed using the abstract interpretation frame-
work [10], is bound to calculate an over-approximate result to elude undecidability.
Due to over-approximation, a safety property may not be verifiable even though
it holds. In this case, the emitted warning is a so-called false positive [3] which
cannot a priori be distinguished from an actual defect in the software. While

12

an analysis with zero false positives is possible [11], it is crucial to understand
the origin of each alarm in order to either refine the analysis or to fix the defect.
Thus, analyzing warnings which are emitted poses two related questions: firstly, is
the warning legitimate?, and if so, how can the error state be reached in terms of
a concrete execution? The difficulty of answering the first has led to approaches
that rank warnings based on the likelihood of being actual defects. Statistical
classifications have been based on error correlation [20] or bayesian filtering [15].
Recent work [23] clusters defects, allowing to eliminate dependent defects if a
master defect is shown to be spurious (defects can be proven legitimate, too).

An exact answer to both questions is required in counterexample-guided
abstraction refinement (CEGAR) in model checking [8]. However, deciding if a
warning is legitimate is strictly easier in the context of CEGAR than in a general
static analysis as the model checker produces an abstract counterexample. A
concrete counterexample may then be inferable by replaying the trace in the
concrete program [21]. If successful, the concrete trace can be used afterwards for,
e.g., error localization [2]. If constructing the trace fails at a certain program point,
a new predicate can be introduced to refine the abstract model [1]. In the context
of numeric analysis, Gulavani and Rajamani [14] propose to refine a pre-analysis,
based on a fixed point computation with widening, by introducing predicates
using so-called hints. Later, they extended their technique to combine widening
with interpolants between verification conditions and the inferred state [13].
Yet, neither work is concerned with computing the backward trace but assumes
that it has been inferred by a theorem prover. Our approach can infer a set
of traces that could provide additional hints as to what new predicates are
needed, thus extending their work [13, 14]. Finitization, as performed by our
techniques, also appears in bounded model checking [7]. There, the state space of
the system is explored in a breadth-first fashion in forward direction, up to a given
depth k. By way of comparison, our approach unrolls the program back-to-front,
implementing strategies to minimize the unrolling depth k during the generation
of a counterexample on an under-approximate description of each block.

For static analyses that operate on the semantics of the actual program, no
model program exists in which the trace can be inferred, and backward reasoning
from the warning to the program entry is required [28]. Backward reasoning,
in turn, amounts to solving the following abduction problem: Given B and C,
compute a non-empty A in (A ∧B)⇒ C. Here, A and C can be thought of as
states before and after a guard B, respectively. When A,B and C are elements
of an abstract domain then A 6= ⊥ is called the pseudo-complement of B relative
to C if it is the largest unique element with (A u B) |= C. A domain in which
each pair of elements has a pseudo-complement is called a Heyting domain. Few
classes of linear constraints allow abduction [24] and no single numeric domain
commonly used in forward analyses is Heyting, nor is the combination of Heyting
domains necessarily a Heyting domain [25]. As an example, consider the intervals
B = [0, 0], C = [−5, 5] for which two incomparable A can be found, namely
A = [−5,−1] and A = [1, 5]. One way out of this dilemma is to lift a non-Heyting
domain to its power-set domain [18], which yields a Boolean domain. A Boolean

13

domain B is always Heyting since for each b ∈ B there exists a “full” complement
b̄ ∈ B with b t b̄ = > and b u b̄ = ⊥. Boolean functions naturally form a Boolean
domain which motivates our choice for inferring backward traces. Given their
expressiveness and the recent advances in SAT solving, it is sufficient to only use
Boolean functions which also forestalls potential difficulties of combining this
domain with other (Heyting) domains. Rival [28] sidesteps the abduction problem
by calculating an A′ with A |= A′ using the same domains as in forward analysis.
To cap the over-approximation of the backward transformer, backward states are
intersected with the forward invariants. Over-approximation makes it unlikely
that an empty state is ever observed. Then, a warning cannot be identified as a
false positive. Indeed, Rival’s analysis merely informs a tool-users about inputs
in which a counterexample might lie. In contrast, Erez [12] aims at reducing the
number of false positives by performing a bounded search for backward traces
using theorem proving. Further afield is the work of Kim et al. [17] who, after a
fast but imprecise forward analysis, slice the program for a property violation
before running a more expensive forward analysis based on SMT solving.

7 Conclusion

This paper advocates integrating under-approximate abduction using SAT into
forward abstract interpretation frameworks. The motivation is to generate a
definitive counterexample once a property violation has been detected or to
identify a warning as spurious. Using Boolean formulae as abstract domain is
theoretically motivated as many domains used in verification cannot express
abduction. Moreover, the domain benefits from the progress in SAT solving,
specifically the recent advances in computing under-approximate projections.

Acknowledgements The authors want to thank Andy King for interesting discus-
sions and Stefan Kowalewski for his support in this line of scientific enquiry.

References

1. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving
for predicate abstraction refinement. In CAV, volume 3114 of LNCS, pages 457–461.
Springer, 2004.

2. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors in
counterexample traces. In POPL, pages 97–105. ACM, 2003.

3. A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. R. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM, 53(2):66–75, 2010.

4. J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean Formulae.
In SAS, volume 6337 of LNCS, pages 167–183. Springer, 2010.

5. J. Brauer and A. King. Transfer function synthesis without quantifier elimination.
In ESOP, volume 6602 of LNCS, pages 97–115. Springer, 2011.

6. J. Brauer, A. King, and J. Kriener. Existential Quantification as Incremental SAT.
In G. Gopalakrishnan and S. Qadeer, editors, CAV, LNCS. Springer, July 2011.

14

7. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfia-
bility solving. Formal Methods in System Design, 19(1):7–34, 2001.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In CAV, volume 1855 of LNCS. Springer, 2000.

9. E. M. Clarke and H. Veith. Counterexamples revisited: Principles, algorithms,
applications. In Verification: Theory and Practice, volume 2772 of LNCS, pages
208–224. Springer, 2003.

10. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252. ACM, 1977.

11. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and X. Rival.
The Astrée analyser. In ESOP, volume 3444 of LNCS, pages 21–30. Springer, 2005.

12. G. Erez. Generating concrete counterexamples for sound abstract interpretation.
Master’s thesis, School of Computer Science, Tel-Aviv University, Israel, 2004.

13. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
refining abstract interpretations. In TACAS, volume 4963 of LNCS, pages 443–458.
Springer, 2008.

14. B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for abstract
interpretation. In TACAS, volume 3920 of LNCS, pages 474–488. Springer, 2006.

15. Y. Jung, J. Kim, J. Shin, and K. Yi. Taming false alarms from a domain-unaware
C analyzer by a bayesian statistical post analysis. In SAS, volume 3672 of LNCS,
pages 203–217. Springer, 2005.

16. M. Karr. Affine Relationships among Variables of a Program. Acta Informatica,
6:133–151, 1976.

17. Y. Kim, J. Lee, H. Han, and K.-M. Choe. Filtering false alarms of buffer overflow
analysis using SMT solvers. Inform. & Softw. Techn., 52(2):210–219, 2010.

18. A. King and L. Lu. Forward versus Backward Verification of Logic Programs. In
ICLP, volume 2916 of LNCS, pages 315–330. Springer, 2003.

19. A. King and H. Søndergaard. Inferring Congruence Equations Using SAT. In CAV,
volume 5123 of LNCS, pages 281–293. Springer, 2008.

20. T. Kremenek and D. R. Engler. Z-ranking: Using statistical analysis to counter
the impact of static analysis approximations. In SAS, volume 2694 of LNCS, pages
295–315. Springer, 2003.

21. D. Kroening, A. Groce, and E. M. Clarke. Counterexample guided abstraction
refinement via program execution. In ICFEM, volume 3308 of LNCS, pages 224–238.
Springer, 2004.

22. S. K. Lahiri, R. E. Bryant, and B. Cook. A Symbolic Approach to Predicate
Abstraction. In CAV, volume 2725 of LNCS, pages 141–153. Springer, 2003.

23. W. Lee, W. Lee, and K. Yi. Sound non-statistical clustering of static analysis
alarms. In VMCAI, 2012. to appear.

24. M. J. Maher. Abduction of linear arithmetic constraints. In ICLP, volume 3668 of
LNCS, pages 174–188. Springer, 2005.

25. M. J. Maher and G. Huang. On computing constraint abduction answers. In LPAR,
volume 5330 of LNCS, pages 421–435. Springer, 2008.

26. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In CAV, volume 2404 of LNCS, pages 250–264. Springer, 2002.

27. M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. ACM Trans. Program.
Lang. Syst., 29(5), August 2007.

28. X. Rival. Understanding the Origin of Alarms in Astrée. In SAS, volume 3672 of
LNCS, pages 303–319. Springer, 2005.

15

