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One instruction at a time abstraction by
transfer function lookup
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Transfer function synthesis with 3, and V, [SAS'10]
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Transfer function synthesis without 3, and V,
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Feasible mode combinations
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Transfer functions as systems of guarded updates

» Consider the following:

1:ADD RO, R1 2:MOV R2, RO 3:EOR R2, R1 4:LSL R2
5:SBC R2, R2 6:ADD RO, R2 7:EOR RO, R2

> Implements RO’ := isign(RO+R1,R1) where isign assigns
abs (RO+R1) to RO if R1 > 0 and -abs (RO+R1) otherwise
> Need to extract cases:
» Cases which are there by design: R1 > 0

» Cases which are implementation artefacts: when abs is applied
to —23! then the result is 23! subject to overflow which is —23!
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Modes of ADD RO, R1, LSL R2 and ADD RO, R2

» Let 1 (mu) denote a Boolean encoding of ADD RO, R1 over
bit-vectors {r0, r1,...} obtained through SSA and

110 = pA-rO[31] A-ri[31]Ar0'[31]
fiy = pArOBLAFA[31]A-r0'[31]
pe = pA(rO[31] v ri[31] v —r0'[31]) A(~r0[31] v —ri[31] v r0'[31])

» Let vp and vg (nu) express the overflow and exact modes of
LSL R2.

> In an analogous way to the first ADD, let no, ny and ng
express the semantics of ADD RO, R2.
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Composing modes for whole block

» Using these encodings that satisfy a single mode, we can
compose a formula for a fixed mode-combination.

» The combination of uy, Vg and ng is infeasible

» The above block constitutes 3 -2 -3 = 18 combinations of
modes, but only five of which are satisfiable

» We derive a guard and update only for the feasible
mode-combinations
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Synthesising guards
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Deriving guards with dichotomic search

» Consider the case where (1) underflows, (4) overflows and (6)
is exact, with the corresponding formula denoted 7

» To derive an octagonal guard for 7, consider the problem of
computing least d such that —({(r0)) — (r1)) < d

> Let « be a formula encodes ((d)) = —((r0) — (r1)) where d is
signed and « is extended to 34 bits to prevent wraps
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Maximising —233 < d < 233 bit-by-bit

>

v

v

v

v

v

v

Then check:
Yt =7 A K A-d[33]

Satisfiability of 1! shows 0 < d < 233
Then check:

Y2 =7 Ak A—d[33] A d[32]

Satisfiability of 1% shows 23?2 < d < 233
Then check:

3 = Ak A—d[33] A d[32] A d[31]

Unsatisfiability of 43 shows 232 < d < 232 4 231
Continuing in this way we infer 232 < d < 232 4+ 1.
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Just for the record

Repeating this tactic for all five feasible mode-combinations:

gom.om ye = 251 <(rO)+(ri) <2% A0 (i) <23t-1
8ew g o = —231<(rO)+((ri) <23 -1

gum.om ge = —22 < (r0)+((ri) <—2%-1

ge) o<4> E®) = 0< <<f§>>+«f:1>> <2%1-1 A=< (ri)<1
Zow, o g6 =23 +1 < (r0) +((r1) < 2%

Redundant inequalities are omitted for clarity of presentation
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Synthesising updates
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Consider ADD RO R1; LSL RO in exact modes

We want an update to map octagonal input constraints with
symbolic constants to octagonal outputs with symbolic constants:

(rO) < dy ((r0 ) < 2ds
(ri) < do (rl) <da
—((r0) < ds ={(r0 ) <245
L iy <d U —(ri) <da
(r0) + (ri) < ds (ro') + (ri') <205 +
—{(r0) — (1)) < d —(ro"y — (") < 2dp + d
—(roh+(rl) < —(r0) + (1) <2ds +
(- (r0) — (r1)) <ds ) ((r_),>>—<(r_]).l>>§2d5+d4
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Consider (<r6/>> < d] and the problem of discovering a

relationship between d] and di, ..., ds

> Let 31, cees C_is denote signed 34-bit vectors that represent the
symbolic constants di,...,ds

» Let k denote a formula that holds iff the 8 inequalities
{(ro) < {(d1)), ..., (r0) — (r1)) < ((ds)) simultaneously hold
» Let 7 denote a propositional encoding for
ADD RO R1; LSL RO operating in exact mode
> Let p encode the equality <<r_(jl>) = (<c7{>> where cf{ is a signed
bit-vector representing d
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Step i: solving and maximisation

Present kK A ™ A p to a SAT solver and find a model:

v

m = {{( ) =1, () =1, (b)) =1,.... () =1, (dh)) = 1}

{(d) =1 may not be maximum for (di)) =1, ..., (dg) =
Let ¢ denote a formula that holds iff (di)) =1, ..., (dg)) =

Apply dichotomic search to find the maximal value of ((df
subject to k AT A p AC.

v

v

v

-+
_
&

v

This gives the model:
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Triangularisation and resolving

» Suppose the matrix My is constructed from m} by using the

variable ordering (dj, d1, ..., ds) on columns:
1 0 0 0 00O 0 0 0]2]
01 00O0OOOTG OO O]|1
0 01 000 O0O0CO0]|1
0 001 0O0O0O0O0TO0O]|O0
M;=(0 0001 0O0O0O0|O0
0 000O0O1O0O0OQO0]|1
0 000O0O0OO0OT1O0TO0]|O0
0 000O0OOO0OT1TTQO0]1
0 00000 0 0 1]1]

» Let p denote a formula that holds iff ((d;)} # 1 holds
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Step ii: solving and maximisation

> Present kK Am™ A p A i to a SAT solver and find a model:
mo = { (D) =8, (i) =3, (k) =3,.... (7)) = 2, (b)) = 0}

> ((d!) =8 may not be maximum for (di)) =3, ..., (dg) =0
> Let ¢ denote a formula that holds iff (di)) =3, ..., (dg)) =0

» Apply dichotomic search to find the maximal value of ((d]))
subject to k AT A p AC(.

» This gives the model:
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Merging [Karr'76]

» The model mj is interpreted as a matrix:

0 0 0]10]
0
0 0 0|3

O O =
o = O
= O O
o O O
o O O
O O O
o
o
w

M, =

0 00102
00

OO -

00
00

0
0

» The merge M1 LI My is as follows:

10 0 0 0 -2 00 0|0
01 -10 0 0 O0OTO|O
M;UM;= (00 0 1 -2 0 0 0 0]0
00 0 00 0 1202
00 0 00O 0 0111
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Step iii and iv: solving and maximisation

>

>

v

v

v

Let 1 now denote a formula that holds iff (d7)) + ((dg)) # 1
Presenting x A ™A p A i to a solver gives:

my = {{(dl) = 22, (i) =8,..., () =0}
Maximising <<c7{>> then gives:
mh = { (L) =26, () =8...., (&) =0}

Form M3 and calculate another merge:

10 0 0 0 2000
M1UM2“M3_[0 1 11 -1 0 000
Repeating
M;UM;UMsUM, =1 0 0 0 0 =2 0 0 0]0]

Conclude df = 2ds
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“With" versus “without” for intervals

block insts | bits runtime
guards/SAT | affine/SAT [ overall [| SAS'10
inc 1 8 0.2s / 40 01s /5 0.3s 0.2s
32 | 055/136 | 02s/5 | 1.0s 23.0s
‘ 8 0.3s / 60 01s/8 | 0.4s 0.3s
shifter | 2 | 35 | 0gs/216 | 02s/8 | L1Os o0
om ; | 8 — 01s/3 | Ols 0.1s
P 32 — 01s/3 | 0.ls 0.2
. 8 0.2s / 40 02s/5 0.4s 0.5s
flipper | 4 | 35 | 00s/216 | 03s/5 | 1.2s o
be s | 8 | 255/216 | 03s/8 | 28 0.8s
32 | 655/792 | 03s/8 | 6.8s 0
isien 7 8 4.1s / 360 0.2s /18 4.3s 4.5s
& 32 | 10.7s /1320 | 0.4s/18 | 11.1s 0
8 | 285/216 | 03s/8 | 3.1s 955
absolute | 10 | 35 | 75577020 | 03s/8 | 7.5s o0
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