Transfer Function Synthesis

without Quantifier Elimination

Jorg Brauer and Andy King

RWTH Aachen University Portcullis Computer Security

ENGLAND

Frisian s OCEA N
Islands
NORTH SEA

o "
it e e i
%
5 POLAND
NETHERLANDS ' Minster '_“"M o3
£} o Mg :
i el i)
O Kl 0~ mELAND
BELGIU) ocologne © Weimar * Dresden
SEonn
- Frankdurt
Luxemaouta . Vel

czecH
Nurembers pepuBLic

o
Heldelberg' %,,) e
FRANCE al ° Stuttgart Sl =
R Tabingen o BAVARIA
ke - Mnich
0—m=100k O Cuntiinee M pustrin
0 a——60 lllllll N @ Filssen

Ietes of Sellly
SWITZERLAND

Jorg Brauer and Andy King sfer Function Synthesis without Quantifier Elimination

One instruction at a time abstraction by
transfer function lookup

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Transfer function synthesis with 3, and V, [SAS'10]

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Transfer function synthesis without 3, and V,

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Feasible mode combinations

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Transfer functions as systems of guarded updates

» Consider the following:

1:ADD RO, R1 2:MOV R2, RO 3:EOR R2, R1 4:LSL R2
5:SBC R2, R2 6:ADD RO, R2 7:EOR RO, R2

> Implements RO’ := isign(RO+R1,R1) where isign assigns
abs (RO+R1) to RO if R1 > 0 and -abs (RO+R1) otherwise
> Need to extract cases:
» Cases which are there by design: R1 > 0

» Cases which are implementation artefacts: when abs is applied
to —23! then the result is 23! subject to overflow which is —23!

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Modes of ADD RO, R1, LSL R2 and ADD RO, R2

» Let 1 (mu) denote a Boolean encoding of ADD RO, R1 over
bit-vectors {r0, r1,...} obtained through SSA and

110 = pA-rO[31] A-ri[31]Ar0'[31]
fiy = pArOBLAFA[31]A-r0'[31]
pe = pA(rO[31] v ri[31] v —r0'[31]) A(~r0[31] v —ri[31] v r0'[31])

» Let vp and vg (nu) express the overflow and exact modes of
LSL R2.

> In an analogous way to the first ADD, let no, ny and ng
express the semantics of ADD RO, R2.

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Composing modes for whole block

» Using these encodings that satisfy a single mode, we can
compose a formula for a fixed mode-combination.

» The combination of uy, Vg and ng is infeasible

» The above block constitutes 3 -2 -3 = 18 combinations of
modes, but only five of which are satisfiable

» We derive a guard and update only for the feasible
mode-combinations

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Synthesising guards

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Deriving guards with dichotomic search

» Consider the case where (1) underflows, (4) overflows and (6)
is exact, with the corresponding formula denoted 7

» To derive an octagonal guard for 7, consider the problem of
computing least d such that —({(r0)) — (r1)) < d

> Let « be a formula encodes ((d)) = —((r0) — (r1)) where d is
signed and « is extended to 34 bits to prevent wraps

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Maximising —233 < d < 233 bit-by-bit

>

v

v

v

v

v

v

Then check:
Yt =7 A K A-d[33]

Satisfiability of 1! shows 0 < d < 233
Then check:

Y2 =7 Ak A—d[33] A d[32]

Satisfiability of 1% shows 23?2 < d < 233
Then check:

3 = Ak A—d[33] A d[32] A d[31]

Unsatisfiability of 43 shows 232 < d < 232 4 231
Continuing in this way we infer 232 < d < 232 4+ 1.

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Just for the record

Repeating this tactic for all five feasible mode-combinations:

gom.om ye = 251 <(rO)+(ri) <2% A0 (i) <23t-1
8ew g o = —231<(rO)+((ri) <23 -1

gum.om ge = —22 < (r0)+((ri) <—2%-1

ge) o<4> E®) = 0< <<f§>>+«f:1>> <2%1-1 A=< (ri)<1
Zow, o g6 =23 +1 < (r0) +((r1) < 2%

Redundant inequalities are omitted for clarity of presentation

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Synthesising updates

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Consider ADD RO R1; LSL RO in exact modes

We want an update to map octagonal input constraints with
symbolic constants to octagonal outputs with symbolic constants:

(rO) < dy ((r0) < 2ds
(ri) < do (rl) <da
—((r0) < ds ={(r0) <245
L iy <d U —(ri) <da
(r0) + (ri) < ds (ro') + (ri') <205 +
—{(r0) — (1)) < d —(ro"y — (") < 2dp + d
—(roh+(rl) < —(r0) + (1) <2ds +
(- (r0) — (r1)) <ds) ((r_),>>—<(r_]).l>>§2d5+d4

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Consider (<r6/>> < d] and the problem of discovering a

relationship between d] and di, ..., ds

> Let 31, cees C_is denote signed 34-bit vectors that represent the
symbolic constants di,...,ds

» Let k denote a formula that holds iff the 8 inequalities
{(ro) < {(d1)), ..., (r0) — (r1)) < ((ds)) simultaneously hold
» Let 7 denote a propositional encoding for
ADD RO R1; LSL RO operating in exact mode
> Let p encode the equality <<r_(jl>) = (<c7{>> where cf{ is a signed
bit-vector representing d

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Step i: solving and maximisation

Present kK A ™ A p to a SAT solver and find a model:

v

m = {{() =1, () =1, (b)) =1,.... () =1, (dh)) = 1}

{(d) =1 may not be maximum for (di)) =1, ..., (dg) =
Let ¢ denote a formula that holds iff (di)) =1, ..., (dg)) =

Apply dichotomic search to find the maximal value of ((df
subject to k AT A p AC.

v

v

v

-+
_
&

v

This gives the model:

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Triangularisation and resolving

» Suppose the matrix My is constructed from m} by using the

variable ordering (dj, d1, ..., ds) on columns:
1 0 0 0 00O 0 0 0]2]
01 00O0OOOTG OO O]|1
0 01 000 O0O0CO0]|1
0 001 0O0O0O0O0TO0O]|O0
M;=(0 0001 0O0O0O0|O0
0 000O0O1O0O0OQO0]|1
0 000O0O0OO0OT1O0TO0]|O0
0 000O0OOO0OT1TTQO0]1
0 00000 0 0 1]1]

» Let p denote a formula that holds iff ((d;)} # 1 holds

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Step ii: solving and maximisation

> Present kK Am™ A p A i to a SAT solver and find a model:
mo = { (D) =8, (i) =3, (k) =3,.... (7)) = 2, (b)) = 0}

> ((d!) =8 may not be maximum for (di)) =3, ..., (dg) =0
> Let ¢ denote a formula that holds iff (di)) =3, ..., (dg)) =0

» Apply dichotomic search to find the maximal value of ((d]))
subject to k AT A p AC(.

» This gives the model:

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Merging [Karr'76]

» The model mj is interpreted as a matrix:

0 0 0]10]
0
0 0 0|3

O O =
o = O
= O O
o O O
o O O
O O O
o
o
w

M, =

0 00102
00

OO -

00
00

0
0

» The merge M1 LI My is as follows:

10 0 0 0 -2 00 0|0
01 -10 0 0 O0OTO|O
M;UM;= (00 0 1 -2 0 0 0 0]0
00 0 00 0 1202
00 0 00O 0 0111

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Step iii and iv: solving and maximisation

>

>

v

v

v

Let 1 now denote a formula that holds iff (d7)) + ((dg)) # 1
Presenting x A ™A p A i to a solver gives:

my = {{(dl) = 22, (i) =8,..., () =0}
Maximising <<c7{>> then gives:
mh = { (L) =26, () =8...., (&) =0}

Form M3 and calculate another merge:

10 0 0 0 2000
M1UM2“M3_[0 1 11 -1 0 000
Repeating
M;UM;UMsUM, =1 0 0 0 0 =2 0 0 0]0]

Conclude df = 2ds

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

“With" versus “without” for intervals

block insts | bits runtime
guards/SAT | affine/SAT [overall [| SAS'10
inc 1 8 0.2s / 40 01s /5 0.3s 0.2s
32 | 055/136 | 02s/5 | 1.0s 23.0s
‘ 8 0.3s / 60 01s/8 | 0.4s 0.3s
shifter | 2 | 35 | 0gs/216 | 02s/8 | L1Os o0
om ; | 8 — 01s/3 | Ols 0.1s
P 32 — 01s/3 | 0.ls 0.2
. 8 0.2s / 40 02s/5 0.4s 0.5s
flipper | 4 | 35 | 00s/216 | 03s/5 | 1.2s o
be s | 8 | 255/216 | 03s/8 | 28 0.8s
32 | 655/792 | 03s/8 | 6.8s 0
isien 7 8 4.1s / 360 0.2s /18 4.3s 4.5s
& 32 | 10.7s /1320 | 0.4s/18 | 11.1s 0
8 | 285/216 | 03s/8 | 3.1s 955
absolute | 10 | 35 | 75577020 | 03s/8 | 7.5s o0

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimination

Jorg Brauer and Andy King Transfer Function Synthesis without Quantifier Elimi

