Approximate Quantifier Elimination for
Propositional Boolean Formulae

\TLANTIC (" rSCOTUAND 0100 km
» OCEAN 3 Dem—— 60 miles
NORTHERN Newcastie-spoa-tyne .4}-

r

NOKT M
SEN

L b
L= nlan
ML

NOVWES. g -
Celie el)
S ?\j_ - [& e
S El sELGium|
= i Wigha (00
Ishes of Seilly Channst FRANCE

Jorg Brauer Andy King
20.04.2011 @ NFM“11

Motivation

e Quantifier elimination on Boolean formulae in

— Unbounded symbolic model checking, predicate
abstraction, dependency analysis, transfer
function synthesis, information flow analysis,
ranking function synthesis, etc.

* Computationally expensive operation
— Model enumeration using SAT possible
— Still potentially too expensive
— Especially when result should be in CNF

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

Approach

* Tocompute Jxq,...,z, : ¢ in CNF, you
classically eliminate the z: one after another

* Only final result is free of z1,..., 2,

e We compute C; such that dz1,...,z, : ¢ = C}

— Then C; over-approximates dxq,...,x, : ©

* Refine over-approximation as
Az1,...,2n 1o = Cy ANC,

* The C clauses derived from prime implicants

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

Dual-Rail Encoding for Implicants

* Consider
= ("xVz)AN(yVz)A(—xV-wV-az)AwV z)
* Goal: eliminate z from ¥ such that dz : ¢ in CNF
* Dual-rail encoding

— Introduce fresh variables

— Replace positive and negative literals

[(em VAT V2)A(zTVw Vo) A(wT Vaz) A
m(p) = { (rwtVow) A (mxT Vo)A (byTV Sy)

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 4

Dual-Rail Encoding for Implicants

* Passing 7(¢) to SAT solver gives a model

wt — 1, w= —= 0, zt — 0, z= — 1,
M: + _
Y — 0, vy — 0, =z — 1

* M defines (w A —x), i.e., (wA-x)=dz:
— Then add blocking clause and proceed

e Observe: (w A —z) under-approximates 3z : ¢
* So how about applying this to ~¢?

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 5

Pushing Negations Around

vi=Vzie iff WVziogp Eow

iff 3. O =
* To find over-approximation —v of 3z : ¢

compute under-approximation of Vz: -y
* But:

— Can only derive implicants of dz : —

— Not implicants of Vz : —p

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

Strategy for Over-Approximating
Implicants

* Observe that Vz: - =dz: —p
— A model of Vz : = is also a model of 3z : —p
— But not vice versa

* Algorithm:
— Negate ¢ to obtain 7(—¢)
— Enumerate implicants C' of 3z : -
— Filter those (' such that C [£ Vz : —p
—Then dz : ¢ = -C

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

Shortest Implicants: Sorting Networks

11 01
19 09
13 03

e Suppose sorter encoded as @

e Cardinality constraint ¢; + i2 + ¢35 = 2 encoded
as o; A\ og A =03 in unary encoding

* 7(mp) Ao A /\f:1 0; N /\?:kﬂ —-0; specifies
implicants of length &

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 8

Worked Example

e Take 7(—yp)

o First’ V] = (—lw) bUt 1z : QY # -7 , SO discard

* Then, v2 = (z) and Jz: p = s

* No more implicants of length 1

* Now, 15 = (—lw A —ly) and 3z - Y = T3

* No more implicants, thus 3z : ¢ = (=2) A (w V)

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 9

Some Experiments

* Written in Java on top of SAT4J

* Benchmark set from CNF encodings of ISCAS-85
hardware circuits

* Observed small CNF representation for quantifier-free
formulae

* Runtime suffers from spurious candidates
— Can be mitigated to some extent using co-factoring

* Traditional SAT-based algorithms rely on model
enumeration (giving a DNF stored in BDDs)

— If too expensive, no result can be computed
— Our algorithm can still compute over-approximation

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 10

So as to not Cause Offense

* McMillan (CAV‘02)

* Lahiri et al. (CAV‘03 & CAV’06)
* Monniaux (CAV’10)

* Kettle et al. (TACAS‘06)

* Bryant (IEEE’87)

* Manquinho et al. (ICTAI‘97)

* Brauer et al. (CAV‘11)

* And many more. ...

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 11

Conclusion

* Based on dual-rail encoding to derive
implicants

* Combined with sorting networks so as to
obtain shortest prime implicants

e Start with over-approximation which is then
incrementally refined

e Algorithm is thus anytime

© 2011 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 12

Thank you very much!

