EIE bedded
\ Sg}tv?laree Rw“'

Range Analysis of Microcontroller Code
Using Bit-Level Congruences

Jorg Brauer (RWTH Aachen University)
Andy King (Portcullis Computer Security)
Stefan Kowalewski (RWTH Aachen University)

20.09.2010 @ FMICS

Motivating Example (1/2)

0x50: ILDI rl1l7 0 0X|50 —> 0X|58 <
O0x51: LDI r26 O 0x51 0x59 0x57

| | |
0x52: LDI r27 0 0x52 0x5A ——»[0x56
O0x53: LDI r30 66 '

0x53
0x54: LDI r31 0 .
0x55: RJUMP 2 °X|54
0x56: LPMPI r0 Z 0x55 0x5B
0x57: STPI X r0
0x58: CPI r26 99
0x>9: CPC r27 rly * Loop copies three bytes
0x5A: BRNE -5 : int
0xoB: RET rom program memory into

SRAM

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 2

Motivating Example (2/2)

0x50: LDI rl1l7 O

0x51: LDI r26 0

0x52: LDI r27 0 0x50 —»| 0x58 |«

0x53: LDI r30 66 ' '

0x54: LDI r31 0 OXF1 OX?Q OX?7
0x55: RJUMP 2 0x52 Ox5A |—»| O0x56
0x56: LPMPI r0 % |

0x57: STPI X r0 0x53

0x58: CPI r26 99 Oxg4

0x59: CPC r27 rl7 I

0x5A: BRNE -5 0x55 0Ox5B

0x5B: RET

* Interval analysis derives X € [96,98| AZ € T
* Insufficient for proving correctness

* Key idea: Combine with relational invariants (bit-
evel congruences) to prove X ¢ [96,98] A Z € [66, 68]

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

Bit-Level Congruences

n—1
* Linear equations of the form Y Xi-vi=nd
— v; are bits =
— \i € Z are coefficients
— m € N js a modulus

— d € Z Is a constant
* Good to choose m = 2° for 8-bit microcontroller
* Can represent overflows that occur frequently

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 4

Example: Exclusive-Or

 Consider instruction EOR r0 rl

* Represented in Boolean logic:
o = A_or0'[i] + r0[i] ® rifi]

* Congruent abstraction of ¥ gives equations
Qcong(©) = Al_g (128 -10'[i] =256 128 - rO[i] + 128 - r1[i])

 Computed using algorithm of [KS10]

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

Computing Congruent Abstractions of
Entire Instruction Set

* Bit-blast concrete semantics of each
instruction as defined in the specification

 Compute congruent abstraction using SAT
solving

* Gives a set of transfer functions for each
Instruction in a program

* Need to be computed once, and can be reused
afterwards

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 6

Deriving Congruent Invariants (1/3)

* Consider EOR ro0 rl; EOR rl r0O; EOR r0O rl;
* Well-known idiom for register-swapping

* Goal: Relate inputs r0, r1 to outputs r0’, r1’ to
derive a suitable program invariant

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 7

Deriving Congruent Invariants (2/3)

* For the first two instructions, we have:

7
/\ (128 - r0'[i] =256 128 - rO[i] + 128 - r1[i /\/\ (r1'i] =256 r1[i]) (1)

1=0
7
A\ (128 - 11'[i] =556 128 - r0O[i] + 128 - r1[i /\/\ (r0'[i] =256 rO[i]) (2)

* Connect outputs of (1) to inputs of (2) and
eliminate intermediate variables

* Elimination amounts to triangularization

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 8

Deriving Congruent Invariants (3/3)

* |nvariant after second instruction:
7

A (r1'[i] =256 10[i]) A /\ (128 - r0'[i] =056 128 - rO[i] + 128 - r1]i])

* |nvariant after third instruction:
7

/\ (I']_/ —256 I'O /\ /\ I‘O —256 I‘]_])

1=0
* Thatis, the implementation does what it is
supposed to do

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 9

Initial Loop Revisited

* For the initial loop, this gives the invariant:
r26’ — r30’ =,55 30 A

/\Z'7=O (1'17/[2] —9256 0A 1'27/[7,] —9256 0A I'Sll[Z] —9256 O)
* Difference between r26’ and r30’ as expected
* But no explicit information about range of r30’

* Combine with intervals X €[96,98] AZ€ T to
prove that x < [96,98] A Z € [66, 68]

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 10

Reduction

* To do so, construct a map

reduce : Int X Cong — Int x Cong
with reduce(i,c) = (V/,¢) and

-/ . /
1 g ¢ Cc

* |ntuitively, let information from one domain
flow into the other computer narrower over-
approximation

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

11

Stronger Intervals

* Convert constraint from intervals into logic:
i =96 <126’ <98A0< 30" <255
* Convert congruent invariant into logic, say, v
* Put i A AT30'[7] and test satisfiability
* Unsatisfiable, hence r30’ <127
* Put Ay A-r30[7] Ar30'[6] and test satisfiability
 Satisfiable, hence r30" > 64
* Proceed with all bits to get 66 <r30" <68

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 12

Stronger Congruences

* Apply similar idea to congruence equations

* Encode additional constraints from intervals
Into equation system

* And then project these additional constraints

* Gives stronger congruence equations, e.g.
1'26/[7] —9256 0 A 1'30/ [7] —9256 0

* Technical details in the paper

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 13

Experiments: Transfer Function
Synthesis

* Derived congruent abstractions for entire
instruction set of ATMEL ATmegal6
microcontroller

 Less than 1s for each instruction

* Some are exact (EOR, INC, ADD, etc.) others
are not (AND, OR)

* By combining intervals and congruences, this
loss of precision can be eased

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 14

Experiments: Computing Loop
Invariants

* |nvariant stabilized after 2 iterations

* Requiring 0.3s

* Computing join and eliminating variables is
cubic in the number of bits

* Thus, it is a good idea to ,slice” variables not
affected

* And use congruences where the interval
analyzer loses precision

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 15

Experiments: Reducing Abstract
Descriptions

* Reducing the intervals using SAT solving
required 16 SAT instances

e Overall runtime using SAT4) amounts to 0.25s
 That is, two instances for each bit

* Reducing congruences requires computing
upper-triangular form, approx. 0.1s

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 16

Related Work

* J. Brauer, T. Noll and B. Schlich: Interval Analysis of
Microcontroller Code Using Abstract Interpretation of
Hardware and Software (SCOPES 2010)

* A. King and H. Sondergaard: Automatic Abstraction for
Congruences (VMCAI 2010)

* T. W. Reps, M. Sagiv and G. Yorsh: Symbolic
Implementation of the Best Transformer (VMCAI 2004)

* P. Cousot and R. Cousot: Systematic Design of Program
Analysis Frameworks (POPL 1979)

M. Codish, V. Lagoon and P. J. Stuckey: Logic
Programming with Satisfiability (TPLP 2008)

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 17

Discussion

* Deriving congruent invariants for binary/assembly code
 Combination with interval analysis

* A novel reduction operator that combines congruences
and intervals

* Approach relies heavily on SAT-solving, which appears
natural when reasoning about bits

* Allows to prove memory safety for many examples of
binary code

* |ntegrated into [mc]square program verification tool

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University 18

Thank you very much!

© 2010 Jorg Brauer, Embedded Software Laboratory, RWTH Aachen University

19

