
Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Past Time LTL Runtime Verification for
Microcontroller Binary Code

Thomas Reinbacher1, Jörg Brauer2, Martin Horauer3, Andreas
Steininger1, and Stefan Kowalewski2

1 Institute of Computer Engineering
Vienna University of Technology, Austria

2 Embedded Software Laboratory
RWTH Aachen University, Germany
3 Department of Embedded Systems

University of Applied Sciences Technikum Wien, Austria

1 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Outline

1 Requirements for Practical Applicability
2 Past Time LTL
3 Non-Intrusive Monitoring

1 Online: Observer synthesized from VHDL
2 Offline: Java application on host computer

4 Example

2 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Setting the Scene Binary Code Verification

1 Embedded software mostly not in plain ANSI C
• side effects, embedded assembler, direct hardware register

access

2 Who verified your compiler?
• GCC 4.3.5 has 8M loc (2.5M C, 1.5M C++, 1.5M Java, 60k

Assembler, . . .)
• Good SW has about 1 error in 250 loc → 8M

250 = 33k flaws
• Proving correctness of the compiler is typically infeasible
• Even translation validation is hard (and not really widespread

in industry)

3 Binary code is as close as possible to the actual execution

3 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Setting the Scene II Runtime Verification (RV)

RV is less ambitious than pure formal SW verification. Aim is to
prove conformance of a single execution w.r.t. a specification.

Testing is based on a check and guess paradigm.
• Guess a configuration of the program’s input
• Check the result of an individual test run

RV bridges the gap between rigorous software verification and
dynamic testing.

Intuition:
• Use formal methods to derive a set of test-cases (guess)
• Execute the test cases, use RV to check validity of test-case

(check)

4 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

CevTes Approach

1 use AI to derive an over-approximation of the reachable states

2 find program locations where the specification is violated

3 backward analysis derives counterexamples (test-cases)

4 interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings

Inputs Analysis Deployment / FPGA

binarybinary

specspec

abstract
inter-

pretation

test-case
generator

property
monitor
unit

target
IP core

[in
va
ria

nt
s]

[te
st

ca
se
s]

[feedback][verdicts][jumps]

5 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Requirements to RV of Microcontroller Code

1 Generality
 not bound to a certain high-level language

2 No Code instrumentation
 extract event sequences without code instrumentation

3 Evaluate Atomic Propositions
 expressiveness vs. complexity of evaluation

4 Automated Observer Synthesis
 push button solution

5 Usability
 applicable to industrial SW development process

6 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Runtime Verification ptLTL

Past time LTL (ptLTL) [Emerson; Handbook of Theoretical CS’90]

ψ ::= true | false | AP | ¬ψ | ψ • ψ
�ψ | �ψ | �ψ | ψ Ss ψ | ψ Sw ψ

Monitoring operators

ψ ::= ↑ ψ | ↓ ψ | [ψ,ψ)s | [ψ,ψ)w

Approach

ptLTL
formula
ptLTL
formula

Formula
parser

Code
generator

Observer
(Java code,
VHDL)

Observer
(Java code,
VHDL)

1 Synthesize HW+SW monitors for ptLTL [Havelund&Rosu;
TACAS’02]

2 Evaluate Atomic Propositions AP of ψ with our invariant
checker

7 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

ptLTL Specifications Atomic Propositions

Properties ϕ are a form of two-variable-per-inequality constraints:

α ·m1 + β ·m2 ./ C

where:
• α,β ∈ {0,±2n |n ∈N} m1,m2 are locations within RAM
• ./ ∈ {<,>,≤,≥,=, 6=} C ∈Z is a constant

R1

R2
≤ 5

≤ 5

≥ 0

≥ 0

≤ 5≤ 5

≥ 0≥ 0

≤ 16

≤ 16

R1

R2
≤ 5

≤ 5

≥ 0

≥ 0

≤ 5≤ 5

≥ 0≥ 0

/ 16 (I + 1×V ≤ 8)

/ 16

8 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Evaluate Atomic Propositions Invariant Checker

• ripple carry adder: Add(〈a〉, 〈b〉,c)
• subtraction of 〈a〉 − 〈b〉 is equivalent to Add(〈a〉, 〈b〉,1)
• relational operators are similar

Operands
register &

Mux

Shifter

Shifter

Arithm.
unit

add/subb

Compare
=, 6=,≤
≥,<,>

RAM bus
RAM we

mode
constant

atomic(i)

9 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

System Overview
1 SUT is a COTS microcontroller IP core
2 Invariant checker is attached to the SUT on an FPGA

H
os
t
Ap

pl
ica

tio
n H
W

M
on

ito
r

SU
T

(IP
-C
or
e)

State

updater

Synth.
SW ptLTL
observer

Atomics
checker

S

Binary
*.hex

Environ-
ment

A

A

• A

•

Synth.
HW ptLTL
observer

Atomics
checkers
Atomics
checkers

Event
logger

δ0 . . . δn

A•A

A

AA A

A AProgram interface

Data interface

I/O &
Pheriph-
erals

CPU
RAM

PROM

FP
GA

USB

10 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Offline vs. Online Monitoring

Online mode:
• synthesize VHDL code for ptLTL evaluation
• evaluate specification in parallel to execution

Offline mode:
• send event updates to host computer
• store microcontroller states to evaluate (arbitrary) APs
• evaluate specification on the execution trace (delayed)

11 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Runtime Verification Emergency Stop (IEC 61131-3)

1start

2 3 4
6

5

7 8

9

ptLTL properties:

ψ1 := ↑ (Θ6)→ [↑ (Θ2 ∨Θ4 ∨Θ7 ∨Θ8), ↑ (Θ1 ∨Θ3 ∨Θ5 ∨Θ9))S
ψ2 := ↑ (Θ5)→↓ (Θ4)
ψ3 := ↑ (Θ9)→↓ (Θ8)

e.g., Θ8 , (currState== ST_WAIT_FOR_RESET2)

12 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Example Emergency Stop (IEC 61131-3)

1 case ST_WAIT_FOR_ESTOPIn2:
2 Ready = true;
3 S_EStopOut = false;
4 Error = false ;
5 DiagCode = 0x8004;
6 if (! Activate)
7 currState = ST_IDLE;
8 if (S_EStopIn && !S_AutoReset)
9 currState = ST_WAIT_FOR_RST2;

10 if (S_EStopIn && S_AutoReset)
11 currState = ST_SAFETY_OUTP_EN;
12 break;

case ST_WAIT_FOR_ESTOPIn2:
Ready = true;
S_EStopOut = false;
Error = false ;
DiagCode = 0x8004;
if (! Activate)
currState = ST_IDLE;

if (S_EStopIn && !S_AutoReset)
currState = ST_WAIT_FOR_RST2;

if (S_EStopIn && S_AutoReset)
currState = ST_RST_ERR2;

break;

• The ptLTL observer will check the validity of ψ1

• The invariant monitor will trace the state changes of the
variable currState

The transition ST_WAIT_FOR_ESTOPIn2→ ST_RST_ERR2 is
illegal and causes ψ1 to evaluate to false.

13 / 14

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

Conclusion & Future Work

• Non-intrusive monitoring framework for ptLTL
• Atomic propositions evaluated in hardware
• Code for ptLTL monitor synthesized in Java or VHDL

• Monitoring an IP-core running on FPGA
• Handles unmodified embedded programs
• on off-the-shelf IP core

• More recent work
• Reprogrammable µCPU for checking properties (see RV’11)
• CFG recovery a priori instead of on-the-fly (see EMSOFT’11)
• ptLTL verification for PLCs (with S. Biallas)

• Orthogonal but related future work: automatic test-case /
trace generation

14 / 14

	Introduction
	Motivation

	Approach
	Requirements
	Evaluation

	Example
	Specification
	Code

	Conclusion

