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Outline

1 Requirements for Practical Applicability
2 Past Time LTL
3 Non-Intrusive Monitoring

1 Online: Observer synthesized from VHDL
2 Offline: Java application on host computer

4 Example
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Setting the Scene Binary Code Verification

1 Embedded software mostly not in plain ANSI C
• side effects, embedded assembler, direct hardware register

access

2 Who verified your compiler?
• GCC 4.3.5 has 8M loc (2.5M C, 1.5M C++, 1.5M Java, 60k

Assembler, . . . )
• Good SW has about 1 error in 250 loc → 8M

250 = 33k flaws
• Proving correctness of the compiler is typically infeasible
• Even translation validation is hard (and not really widespread

in industry)

3 Binary code is as close as possible to the actual execution
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Setting the Scene II Runtime Verification (RV)

RV is less ambitious than pure formal SW verification. Aim is to
prove conformance of a single execution w.r.t. a specification.

Testing is based on a check and guess paradigm.
• Guess a configuration of the program’s input
• Check the result of an individual test run

RV bridges the gap between rigorous software verification and
dynamic testing.

Intuition:
• Use formal methods to derive a set of test-cases (guess)
• Execute the test cases, use RV to check validity of test-case

(check)
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CevTes Approach

1 use AI to derive an over-approximation of the reachable states

2 find program locations where the specification is violated

3 backward analysis derives counterexamples (test-cases)

4 interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings
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Requirements to RV of Microcontroller Code

1 Generality
 not bound to a certain high-level language

2 No Code instrumentation
 extract event sequences without code instrumentation

3 Evaluate Atomic Propositions
 expressiveness vs. complexity of evaluation

4 Automated Observer Synthesis
 push button solution

5 Usability
 applicable to industrial SW development process
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Runtime Verification ptLTL

Past time LTL (ptLTL) [Emerson; Handbook of Theoretical CS’90]

ψ ::= true | false | AP | ¬ψ | ψ • ψ
�ψ | �ψ | �ψ | ψ Ss ψ | ψ Sw ψ

Monitoring operators

ψ ::= ↑ ψ | ↓ ψ | [ψ,ψ)s | [ψ,ψ)w

Approach

ptLTL
formula
ptLTL
formula

Formula
parser

Code
generator

Observer
(Java code,
VHDL)

Observer
(Java code,
VHDL)

1 Synthesize HW+SW monitors for ptLTL [Havelund&Rosu;
TACAS’02]

2 Evaluate Atomic Propositions AP of ψ with our invariant
checker

7 / 14



Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification
Code

Conclusion

ptLTL Specifications Atomic Propositions

Properties ϕ are a form of two-variable-per-inequality constraints:

α ·m1 + β ·m2 ./ C

where:
• α,β ∈ {0,±2n |n ∈N} m1,m2 are locations within RAM
• ./ ∈ {<,>,≤,≥,=, 6=} C ∈Z is a constant
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Evaluate Atomic Propositions Invariant Checker

• ripple carry adder: Add(〈a〉, 〈b〉,c)
• subtraction of 〈a〉 − 〈b〉 is equivalent to Add(〈a〉, 〈b〉,1)
• relational operators are similar
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System Overview
1 SUT is a COTS microcontroller IP core
2 Invariant checker is attached to the SUT on an FPGA
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Offline vs. Online Monitoring

Online mode:
• synthesize VHDL code for ptLTL evaluation
• evaluate specification in parallel to execution

Offline mode:
• send event updates to host computer
• store microcontroller states to evaluate (arbitrary) APs
• evaluate specification on the execution trace (delayed)
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Runtime Verification Emergency Stop (IEC 61131-3)

1start

2 3 4
6

5

7 8

9

ptLTL properties:

ψ1 := ↑ (Θ6)→ [ ↑ (Θ2 ∨Θ4 ∨Θ7 ∨Θ8), ↑ (Θ1 ∨Θ3 ∨Θ5 ∨Θ9))S
ψ2 := ↑ (Θ5)→↓ (Θ4)
ψ3 := ↑ (Θ9)→↓ (Θ8)

e.g., Θ8 , (currState== ST_WAIT_FOR_RESET2)
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Example Emergency Stop (IEC 61131-3)

1 case ST_WAIT_FOR_ESTOPIn2:
2 Ready = true;
3 S_EStopOut = false;
4 Error = false ;
5 DiagCode = 0x8004;
6 if (! Activate)
7 currState = ST_IDLE;
8 if (S_EStopIn && !S_AutoReset)
9 currState = ST_WAIT_FOR_RST2;

10 if (S_EStopIn && S_AutoReset)
11 currState = ST_SAFETY_OUTP_EN;
12 break;

case ST_WAIT_FOR_ESTOPIn2:
Ready = true;
S_EStopOut = false;
Error = false ;
DiagCode = 0x8004;
if (! Activate)
currState = ST_IDLE;

if (S_EStopIn && !S_AutoReset)
currState = ST_WAIT_FOR_RST2;

if (S_EStopIn && S_AutoReset)
currState = ST_RST_ERR2;

break;

• The ptLTL observer will check the validity of ψ1

• The invariant monitor will trace the state changes of the
variable currState

The transition ST_WAIT_FOR_ESTOPIn2→ ST_RST_ERR2 is
illegal and causes ψ1 to evaluate to false.
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Conclusion & Future Work

• Non-intrusive monitoring framework for ptLTL
• Atomic propositions evaluated in hardware
• Code for ptLTL monitor synthesized in Java or VHDL

• Monitoring an IP-core running on FPGA
• Handles unmodified embedded programs
• on off-the-shelf IP core

• More recent work
• Reprogrammable µCPU for checking properties (see RV’11)
• CFG recovery a priori instead of on-the-fly (see EMSOFT’11)
• ptLTL verification for PLCs (with S. Biallas)

• Orthogonal but related future work: automatic test-case /
trace generation
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