Past Time LTL Runtime Verification for
Microcontroller Binary Code

Thomas Reinbacher?,
Stelnlnger ,

Jorg Brauer?,

Martin Horauer3, Andreas

and Stefan Kowalewski?

1 Institute of Computer Engineering
Vienna University of Technology, Austria

2 Embedded Software Laboratory

RWTH Aachen University, Germany

3 Department of Embedded Systems
University of Applied Sciences Technikum Wien, Austria

TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

I
EC
AACHEN

RHEINISCH-
WESTFALISCHE
TECHNISCHE
HOCHSCHULE

FACHHOCHSCHULE

TECHNIKUM WIEN
v

ed

Introduction

Motivation

Approach
Requirements.
Evaluation

Example
Specification

Code

Conclusion

Outline @ms
mJ)uﬂng
ed

Introduction

Motivation

Approach
Requirements.
Evaluation
Example
® Requirements for Practical Applicability Speciction
Code
® Past Time LTL Conclusion

©® Non-Intrusive Monitoring

@ Online: Observer synthesized from VHDL
® Offline: Java application on host computer

O Example

Setting the Scene Binary Code Verification @ms
m‘retglng

Introduction

@ Embedded software mostly not in plain ANSI C Meriation

Approach

= side effects, embedded assembler, direct hardware register Requirements
access Evaluation
Example

Specification

Code

Conclusion

® Who verified your compiler?

= GCC 4.3.5 has 8M loc (2.5M C, 1.5M C++, 1.5M Java, 60k
Assembler, ...)

= Good SW has about 1 error in 250 loc — %’\g = 33k flaws

= Proving correctness of the compiler is typically infeasible

= Even translation validation is hard (and not really widespread
in industry)

© Binary code is as close as possible to the actual execution

Setting the Scene Il Runtime Verification (RV) @ms
m‘retglng

Introduction

RV is less ambitious than pure formal SW verification. Aim is to Motivation
prove conformance of a single execution w.r.t. a specification. Approach
o

Testing is based on a check and guess paradigm. Example
= Guess a configuration of the program’s input o

= Check the result of an individual test run Conclusion

RV bridges the gap between rigorous software verification and
dynamic testing.

Intuition:
= Use formal methods to derive a set of test-cases (guess)

= Execute the test cases, use RV to check validity of test-case
(check)

CevTes Approach

@ use Al to derive an over-approximation of the reachable states

® find program locations where the specification is violated

@® backward analysis derives counterexamples (test-cases)

O interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings

Deployment / FPGA ——

ed

Introduction

Motivation

Approach
Requirements
Evaluation

Example
Specification

Code

Conclusion

target
IP core

Inputs — Analysis

M| T 7 .
abstrac = 9 property

test-case
— inter- |- S » - S 45| monitor |«
) & | generator o '
m' pretation | 2 1] unit
- = =

i

i

iumps] ——

I
[verdicts]

——— [feed back]J

Requirements to RV of Microcontroller Code ystems
m‘retglng

Introduction

©® Generality
~> not bound to a certain high-level language approscn

Requirements

Evaluation

® No Code instrumentation Example

Specification

~~ extract event sequences without code instrumentation Coe

Conclusion

©® Evaluate Atomic Propositions
~~ expressiveness vs. complexity of evaluation

O Automated Observer Synthesis
~~ push button solution

@ Usability
~~ applicable to industrial SW development process

6/14

Runtime Verification

Past time LTL (ptLTL) [Emerson; Handbook of Theoretical CS'90]

P o=

Monitoring operators

4

Approach

formula |

@ Synthesize HW+SW monitors for ptLTL [Havelund&Rosu;

TACAS'02]

@® Evaluate Atomic Propositions AP of ¢ with our invariant

checker

true | false | AP | =y | poy
Op | op [Ly [Sy | ¥ Swy

TPy s | [v)w

Formula
parser

Code
generator

ed

Introduction
Motivation

Approach
Requirements

Evaluation

Example
Specification

Code

Conclusion

ptLTL Specifications Atomic Propositions @ms
m‘retglng

Properties ¢ are a form of two-variable-per-inequality constraints:

Introduction

Motivation

a-my+p-maC Approsch
Requirements
where: Evaluation
)) . Example
= a,fe{0,£2"|ne N} my, my are locations within RAM Speciction
Code
= {<1>|§12121#} CGZ IS a constant Conclusion
Ry Ry
= >0 <5 4 - >0 <5 4
516,\ 16
1 4 3
<5 <5 <5 <5
>0 >0 >0 >0
R T i R
L >0 <5 ¢ Ly >0 <5 ¢

8/14

Evaluate Atomic Propositions Invariant Checker ystems
m‘relglng

Introduction

Motivation

Approach
= ripple carry adder: Add((a), (b),c) R:uire.ments
= subtraction of (a) — (b) is equivalent to Add((a), (b),1) A
= relational operators are similar Speciein

Conclusion

RﬁAA'\ﬁAbVLJS J| Operands [Shifter N Arithm. Compare
register & unit |- =,#,< | [— atomic(i)

conr:tgcriw% — Mux W/ add/subb >, <>

9/14

System Overview

® SUT is a COTS microcontroller IP core
® Invariant checker is attached to the SUT on an FPGA

Host Application

%25

updater

¢

Atomics
checker

i

Synth.
SW ptLTL

observer

<— USB —

FPGA

!

I —

5 v

E| Synth. . Event

§ HW ptLTL Atomics logger

checkers

= | observer 00...0n

T { i f
_______Datainterface

v 1 ! !

S| 1o RAM

2 | Pheriph- CPU

— erals PROM

=)

? b

Nl
|

ment r)

ed

Introduction

Motivation

Approach
Requirements
Evaluation

Example
Specification

Code

Conclusion

Offline vs. Online Monitoring

Online mode:
= synthesize VHDL code for ptLTL evaluation

= evaluate specification in parallel to execution

Offline mode:
= send event updates to host computer
= store microcontroller states to evaluate (arbitrary) APs

= evaluate specification on the execution trace (delayed)

ed

Introduction
Motivation

Approach
Requirements
Evaluation

Example
Specification

Code

Conclusion

11/14

Runtime Verification Emergency Stop (IEC 61131-3) @ms
m‘retglng
° Introduction
Approach

Requiremen ts

start — Evaluation
Example

Specification

@_/Y -

Conclusion

ptLTL properties:

Pl = 1) = [1(@2V 04V O7VBs), 1(01VO3VOsV o))
9 = 1(05) 1 (04)
P> = 1(09) — | (Os)

e.g., ®g = (currState == ST_WATT_FOR_RESET2)

Example Emergency Stop (IEC 61131-3) @m,
m‘retglng

1 case ST_WAIT_FOR_ESTOPIn2: case ST_WAIT_FOR_ESTOPIn2: Introduction
2 Ready = true; Ready = true; Motivation
3 S_EStopOut = false; S_EStopOut = false; Approach

4 Error = false; Error = false; Requirements
5 DiagCode = 0x8004; DiagCode = 0x8004; Evaluation
6 if (! Activate) if (! Activate) Example

7 currState = ST_IDLE; currState = ST_IDLE; Specification
8 if (S_EStopln && !S_AutoReset) if (S_EStoplIn && !S_AutoReset) @

9 currState = ST_WAIT_FOR_RST?2; currState = ST_WAIT_FOR_RST2; Conclusion
10 if (S_EStopln && S_AutoReset) if (S_EStopIn && S_AutoReset)

11 currState = ST_SAFETY_OUTP_EN; currState = ST_RST_ERR2;

12 break; break;

= The ptLTL observer will check the validity of lpl

= The invariant monitor will trace the state changes of the
variable currState

The transition ST_WAIT_FOR_ESTOPIn2 — ST_RST_ERR2 is
illegal and causes P! to evaluate to false.

13/14

Conclusion & Future Work ystems
m‘relglng

Introduction

Motivation

= Non-intrusive monitoring framework for ptLTL Approach
= Atomic propositions evaluated in hardware perenens
= Code for ptLTL monitor synthesized in Java or VHDL Example

= Monitoring an IP-core running on FPGA Speefeain
= Handles unmodified embedded programs Conclusion

= on off-the-shelf IP core

= More recent work

= Reprogrammable yCPU for checking properties (see RV'11)
= CFG recovery a priori instead of on-the-fly (see EMSOFT'11)
= ptLTL verification for PLCs (with S. Biallas)

= Orthogonal but related future work: automatic test-case /
trace generation

14/14

	Introduction
	Motivation

	Approach
	Requirements
	Evaluation

	Example
	Specification
	Code

	Conclusion

