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Motivation @ms
m‘ruﬂng
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“It is fair to state, that in this digital era correct systems for
information processing are more valuable than gold."

[Henk Barendregt]

= Explosion of the Ariane 5 launcher on its maiden flight (1996)
= Loss of the NASA Mars Climate Orbiter (1999)
= US-Northeast blackout (2003)

= Toyota Prius software causes stopping and stalling on
highways (2005)
= Microsoft Excel multiplication bug (2007)

= OBB train ticketing machine selling single fare tickets for
3720.8 € (2008)

= Al mobile network breakdown (2011-08-21) due to a SW bug



Embedded Systems Software Verification @ms
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“Are we building the product right?”
Does the embedded systems software conform to its specification?

Dynamic Verification vs. Formal SW Verification

Dynamic Verification (Testing)
... finds cases where code does not meet its specification
= can never be exhaustive & may miss errors

= generate and run test-cases is labor and time intensive

Formal SW Verification (Model Checking, Abstract Interpretation)
...formally proving that the program satisfies its specification
= suffers from scalability issues (e.g., state-explosion problem)
= scalability is often traded for precision

= is exhaustive, at best a “push-button” solution



A trivial Example (bug can be found by model-checking)

#include <avr/io.h>
#include <avr/interrupt.h>

UINT16 event;

ISR (TIMERO_OVF_vect)
{
if (event == 0x00)
V2 Y4
}

void main (void)

{

event = 0x01;
init () ;
while (1)
{
if (pulse_from_sensor () == 0x01)
event++;
if (event == 0x0100)

event = 0x01;

ed



Problems and Challenges in Model Checking

= State-explosion problem (execution time, memory
consumption)
= Abstraction Techniques (Dead Variable Reduction, Delayed
Nondeterminism, Nondeterministic Program Status Word,
Lazy Interrupt/Stack Evaluation, Path Reduction, etc.)
= Static Analyses (Control Flow Analysis, Stack Analysis,
Reaching Definitions Analysis, Interrupt Flag Analysis, Live
Variable Analysis, Dead Variable Reduction, Path Reduction,
Register Bank Analysis etc.)
= Validity of the system model
= [MC]SQUARE: Verification of the MCU simulators
= Specification of system properties
= GUI to guide the creation of CTL / CTL* formulas
= False Negatives — invalid counterexamples

~~ CounterExample Validation and Test Case Generation
Framework (CevTes)
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Abstract Interpretation for Test-Case Generation ystems
m‘retglng

abstracted behavior - - _ _

microcontroller’s universe - - |

v spurious warnings v

= Al computes an over-approximation of the exact behavior
= thus, found bugs may be spurious

= how to separate real bug reports from spurious ones?

Our goals:

= derive real counterexample traces for binary programs using
Abstract Interpretation

= verify counterexamples by a dedicated hardware unit



CevTes Approach @ms
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@ use Al to derive an over-approximation of the reachable states
® find program locations where the specification is violated
@® backward analysis derives counterexamples (test-cases)

O interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings

Inputs — Analysis Deployment / FPGA ——
M| abstract | £ 8 property
c "
— inter- |- % ’ ;:zte_rcaatier - S monitor It;rcgoerte
. +
m' pretation | 2 1] unit
—_— T = T =

[verdicts]——— [feed back]J

[iumps]




Specification Language

... Assertions figure strongly in Microsoft code. A recent count
discovered more than a quarter million of them in the code for its Office
product suite; (C.A.R. Hoare 2003) ...

Our industrial case study showed that the full expressive power of
temporal logics is often not understood/needed by test engineers.

= local assertions A(pc, ¢) hold on certain program locations

= global invariants Z(¢) hold on every program location

Properties ¢ are a form of two-variable-per-inequality constraints:
®-myp+ ﬁ -mpy <1 C

a,B €{0,£2"|n €N}, my, my are locations within RAM,
> € {<,> <,>,=%#}, and C € Z is a constant.

ed
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Property Monitoring Unit (PMU) ystems
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Input

= dedicated, simple specification language
= assertions derived from the high-level representation of the
program

~~ test suite I' with a finite number of test cases n

Hardware Property Monitoring System under Test

USB Link
] RAM interface K
Vo P R

RAM Environ- \‘g !

Data event Z(g) Path ment 24 cpu RAM PROM
FIFOs | checker monitor =
logger control 1o
1=,

T
!
|

J

PMU controller T :1 711;36M:i;t7e7r£;ge ,,,,,, I

@ initialization phase: loading the program image, loading the
test case, setup of the property checker, invocation of the
MCU

® execution phase: RAM event logger § = <A,©,pc>, invariant
checker, path monitor (execution == CFG path ?)




Property Monitoring Unit

Online Monitoring

= global invariants are monitored on-the-fly

Offline Monitoring

elaborate properties and local assertions are checked at the host
~~ PMU transfers RAM updates ¢ in temporal order

~~ the PMU executes all n test cases T and reports
= spurious (property could not be affirmed)
= violation (global invariant failed)
= infeasible (test case left the intended control flow)

= feasible

Runtime Feedback

abstract interpretation starts with an incomplete control flow
graph (CFG) ~~ “path monitor” deviation + iJMP = add new
edges to CFG
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Invariant Checker: Hardware ystems
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= ripple carry adder: Add((a), (b),c)
= subtraction of (a) — (b) is equivalent to Add((a), (b),1)

= relational operators are similar

RﬁAA'\ﬂAbVLJS J| Operands [ Shifter N Arithm. Compare
register & unit |- =,#,< | [— atomic(i)

conr:t%ﬂ% — Mux W/ add/subb >, <, >




Example - Cooling Control of a DC/DC Converter @ms
m‘retglng

l Cooling controller ‘
[
[fan speed]

v =
Voltage | | I/V |_| Flyback | 3 N Csr?:it;/l

source probes converter 9]
H system

= Specification:
Reql: 0A < |/ < BbHA
Req2: o < Vv < 5V
Req3: ow < VvVxI < 16W

= Assume:
Analysis found a property violation of Req3 and derived a test
case. But how to verify it is a real bug? How to replay the
test case on the SUT?



Specification Exact @ms
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Amps
— >0V <5V «—
P<16W ,\
\ 1
<BA <BA
\P(}mw
> 0A > 0A
T 1 Volts
— >0V <5V <



What we can Monitor in Hardware 2" £2M < C @ms
mJ:etglng

IN

v

Amps
— >0V <5V «—
S 16W
I
5A <5A
>§16W(/+1x Vv <8)
0A > 0A
I Volts
— >0V <5V



Conclusion @rﬁs
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“Formal verification approaches in combination with testing may
pave the way for exhaustive tests of embedded systems software.”

= combine formal verification strategies with testing and online
monitoring

= automatically rule out spurious warnings / test cases

= property checking
= online (on-the-fly) while running the test case on the target

hardware (property monitoring unit)
= offline (on a host computer)
Future work:

= combine with run-time verification approaches (e.g., past
time LTL)

= extend flexibility of online checking, allow for more complex
properties
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