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Motivation

“It is fair to state, that in this digital era correct systems for
information processing are more valuable than gold.”

[Henk Barendregt]

• Explosion of the Ariane 5 launcher on its maiden flight (1996)
• Loss of the NASA Mars Climate Orbiter (1999)
• US-Northeast blackout (2003)
• Toyota Prius software causes stopping and stalling on

highways (2005)
• Microsoft Excel multiplication bug (2007)
• ÖBB train ticketing machine selling single fare tickets for

3720.8 e (2008)
• A1 mobile network breakdown (2011-08-21) due to a SW bug

3 / 1



Embedded Systems Software Verification

“Are we building the product right?”
Does the embedded systems software conform to its specification?

Dynamic Verification vs. Formal SW Verification

Dynamic Verification (Testing)

. . . finds cases where code does not meet its specification
• can never be exhaustive & may miss errors
• generate and run test-cases is labor and time intensive

Formal SW Verification (Model Checking, Abstract Interpretation)

. . . formally proving that the program satisfies its specification
• suffers from scalability issues (e.g., state-explosion problem)
• scalability is often traded for precision
• is exhaustive, at best a “push-button” solution
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A trivial Example (bug can be found by model-checking)
#include <avr/io.h>
#include <avr/interrupt.h>

UINT16 event;

ISR (TIMER0_OVF_vect)
{
if (event == 0x00)

/* ... */
}

void main(void)
{
event = 0x01;

init();
while(1)
{

if (pulse_from_sensor() == 0x01)
event++;

if (event == 0x0100)
event = 0x01;

}
}
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Problems and Challenges in Model Checking

• State-explosion problem (execution time, memory
consumption)

• Abstraction Techniques (Dead Variable Reduction, Delayed
Nondeterminism, Nondeterministic Program Status Word,
Lazy Interrupt/Stack Evaluation, Path Reduction, etc.)

• Static Analyses (Control Flow Analysis, Stack Analysis,
Reaching Definitions Analysis, Interrupt Flag Analysis, Live
Variable Analysis, Dead Variable Reduction, Path Reduction,
Register Bank Analysis etc.)

• Validity of the system model
• [mc]square: Verification of the MCU simulators

• Specification of system properties
• GUI to guide the creation of CTL / CTL* formulas

• False Negatives – invalid counterexamples
 CounterExample Validation and Test Case Generation

Framework (CevTes)
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Abstract Interpretation for Test-Case Generation

spurious warnings

exact

abstracted behavior

microcontroller’s universe

• AI computes an over-approximation of the exact behavior
• thus, found bugs may be spurious
• how to separate real bug reports from spurious ones?

Our goals:
• derive real counterexample traces for binary programs using

Abstract Interpretation
• verify counterexamples by a dedicated hardware unit
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CevTes Approach

1 use AI to derive an over-approximation of the reachable states

2 find program locations where the specification is violated

3 backward analysis derives counterexamples (test-cases)

4 interface a hardware unit attached to the SUT to replay a CE
and automatically identify spurious warnings
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Specification Language

. . . Assertions figure strongly in Microsoft code. A recent count
discovered more than a quarter million of them in the code for its Office

product suite; (C.A.R. Hoare 2003) . . .

Our industrial case study showed that the full expressive power of
temporal logics is often not understood/needed by test engineers.

• local assertions A(pc,ϕ) hold on certain program locations
• global invariants I(ϕ) hold on every program location

Properties ϕ are a form of two-variable-per-inequality constraints:

α ·m1 + β ·m2 ./ C

α,β ∈ {0,±2n |n ∈N}, m1,m2 are locations within RAM,
./ ∈ {<,>,≤,≥,=, 6=}, and C ∈Z is a constant.
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Property Monitoring Unit (PMU)
Input

• dedicated, simple specification language
• assertions derived from the high-level representation of the

program

 test suite Γ with a finite number of test cases n

USB Link Hardware Property Monitoring System under Test

Data
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CPU RAM PROM

1 initialization phase: loading the program image, loading the
test case, setup of the property checker, invocation of the
MCU

2 execution phase: RAM event logger δ = 〈∆,@,pc〉, invariant
checker, path monitor (execution == CFG path ?)
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Property Monitoring Unit

Online Monitoring

• global invariants are monitored on-the-fly

Offline Monitoring

elaborate properties and local assertions are checked at the host
 PMU transfers RAM updates δ in temporal order

 the PMU executes all n test cases T and reports
• spurious (property could not be affirmed)
• violation (global invariant failed)
• infeasible (test case left the intended control flow)
• feasible

Runtime Feedback
abstract interpretation starts with an incomplete control flow
graph (CFG)  “path monitor” deviation + iJMP ⇒ add new
edges to CFG
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Invariant Checker: Hardware

• ripple carry adder: Add(〈a〉, 〈b〉,c)
• subtraction of 〈a〉 − 〈b〉 is equivalent to Add(〈a〉, 〈b〉,1)
• relational operators are similar

Operands
register &

Mux

Shifter

Shifter

Arithm.
unit

add/subb

Compare
=, 6=,≤
≥,<,>

RAM bus
RAM we

mode
constant

atomic(i)
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Example - Cooling Control of a DC/DC Converter

Ag AgCooling controller

[fan speed]

Voltage
source

I/V
probes

Flyback
converter

Safety
critical
system
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er
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]

• Specification:

Req1: 0A ≤ I ≤ 5A
Req2: 0V ≤ V ≤ 5V
Req3: 0W ≤ V × I ≤ 16W

• Assume:
Analysis found a property violation of Req3 and derived a test
case. But how to verify it is a real bug? How to replay the
test case on the SUT?
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Specification Exact

Volts

Amps

≤ 5V

≤ 5V
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What we can Monitor in Hardware ±2n· ri ± 2m· rj ≤ C

Volts

Amps

≤ 5V

≤ 5V

≥ 0V

≥ 0V

≤ 5A≤ 5A

≥ 0A≥ 0A

/ 16W (I + 1× V ≤ 8)

/ 16W
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Conclusion

“Formal verification approaches in combination with testing may
pave the way for exhaustive tests of embedded systems software.”

• combine formal verification strategies with testing and online
monitoring

• automatically rule out spurious warnings / test cases
• property checking

• online (on-the-fly) while running the test case on the target
hardware (property monitoring unit)

• offline (on a host computer)

Future work:
• combine with run-time verification approaches (e.g., past

time LTL)
• extend flexibility of online checking, allow for more complex

properties
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