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ABSTRACT
Static analysis is often performed on source code where in-
tervals – possibly the most widely used numeric abstract
domain – have successfully been used as a program abstrac-
tion for decades. Binary code on microcontroller platforms,
however, is different from high-level code in that data is fre-
quently altered using bitwise operations and the results of
operations often depend on the hardware configuration. We
describe a method that combines word- and bit-level inter-
val analysis and integrates a hardware model by means of
abstract interpretation in order to handle these peculiarities.
Moreover, we show that this method proves powerful enough
to derive invariants that could so far only be verified using
computationally more expensive techniques such as model
checking.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning About
Programs—mechanical verification; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—
program analysis

General Terms
Algorithms, Theory, Verification

Keywords
Static analysis, abstract interpretation, interval analysis, em-
bedded systems, binary code
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1. INTRODUCTION
Abstract interpretation can be applied to the systematic

construction of methods and algorithms for approximating
undecidable or complex problems in program analysis [8].
Particularly, abstract interpretation involves methods for re-
placing an analysis on the concrete program semantics by an
analysis on a simpler, more abstract, domain. Intervals are
probably the most widely used numeric domain for approxi-
mating the values of program variables, and have long been
considered a suitable domain for static analysis of programs
written in high-level languages [7], mainly for two reasons.
Firstly, intervals often provide enough precision to prove in-
teresting program properties, for instance, that all array ac-
cesses are confined to the bounds of the corresponding array.
Secondly, the interval abstract domain is computationally
attractive.

Contrary to existing work, our approach is tailored to
disassembled binary programs for the ATMEL ATmega16
microcontroller, which differ strongly from high-level pro-
grams [2, 3, 26]. A particularly intricate feature of this
microcontroller is that registers and the main memory are
mapped to the same address space. An interesting problem
for any verification tool for this platform is therefore to show
that indirect store operations do not accidentally overwrite
the contents of registers, which is analogous to proving that
array accesses in high-level languages such as C respect the
array bounds. In binary code, however, registers are often
transformed using bitwise instructions – such as OR (bitwise
or), EOR (bitwise exclusive-or), AND (bitwise and), or NEG

(bitwise negation) – for which word-level intervals are not
well-suited: They lead to coarse over-approximations of the
actual value sets. Moreover, control logic is implemented
using branching instructions that depend on certain bits of
the status register such as the carry flag or the zero flag.
This necessitates reasoning about values at the granularity
of bits.

In this paper, we describe how to combine word- and bit-
level analyses in order to obtain tight over-approximations
of value sets for microcontroller binary code. The analysis
has been integrated into [mc]square1, which is a verifica-
tion platform for microcontroller code that supports model

1http://mcsquare.embedded.rwth-aachen.de



checking and static analysis. In [mc]square, static analysis
is used for finding bugs and providing results used in static
state-space reduction methods such as partial order reduc-
tion [27], dead variable reduction, and path reduction [30].
While the target platform considered in this paper is the
ATMEL ATmega16 8-bit microcontroller [1], the approach
is easily transferable to other platforms.

1.1 Motivation
In the following, we detail four peculiarities of microcon-

troller binary code that motivate the construction of our
analysis:

Word- and bit-level intervals.
Intervals for representing value ranges of variables are nat-

urally well-suited for analyzing high-level programs that con-
tain arithmetic operations. While parts of binary code have
a similar structure, for instance, loops where a loop counter
is incremented and compared to a bound, many instructions
alter only single bits of registers. Suppose, for instance, that
only bit 6 of register r0 is accessed in an instruction, and this
bit can hold either 0 or 1, while all other bits are cleared.
In an interval representation for register r0, this would yield
the interval [0, 26], which is a coarse over-approximation of
the actual value set {0, 26}.

On the other hand, if each bit is represented as an interval
with possible values in [0, 1], the concrete values {127, 128}
of a register would lead to the bitwise representation [0, 1]8,
which corresponds to the value set {0, . . . , 255} upon con-
cretization.

Loop conditions.
A major source for precision in (non-relational) interval

analysis is the presence of loop conditions, which allow to
bound ranges of values accessed in loops, etc. In binary
code, however, control logic is formulated in terms of status
flags such as the carry or negative flag, and the path taken
depends on the outcome of some preceding instructions. As
an example, consider the instruction BRNE k, which increases
the program counter by k+1 iff either the negative flag or the
overflow flag in the status register is set. If this is not the
case, the program counter is incremented by 1. Therefore,
conditionals cannot be handled by computing the intersec-
tion between the intervals of the variable accessed in the
loop and the naive branching condition as obtained from
the program code.

Indirect stores.
An indirect store is an operation in which the contents of

one register are stored at a target address that is held in
another register. On microcontrollers such as the ATMEL
ATmega16, registers are reserved locations in the same ad-
dress space as the SRAM. Thus, it is possible to mutate a
register, such as the stack pointer or the status register, if
the target coincides with the address of the register. Ex-
isting analyses often assume that indirect writes never alter
registers [24]. Though appealing in its simplicity, this as-
sumption is dubious for handcrafted code, and it is not un-
known for compilation itself to introduce errors, particularly
in the field of embedded systems. The problem of reasoning
about targets of indirect stores is compounded by the fact
that such operations often arise in loops.

Hardware dependencies.
Furthermore, an analysis of microcontroller binary code

needs to take care of hardware dependencies. On the AT-
MEL ATmega16, for instance, four I/O ports can be used
for communicating with peripherals such as sensors. Each
port (denoted x) has three associated registers: a data reg-
ister PORTx, a data direction register DDRx, and a port input
register PINx. If the n-th bit of DDRx is set, the n-th bit
of PINx is configured as an output pin. This means that it
stores the value that was written to PORTx. If it is cleared,
the n-th bit of PINx is configured as an input pin, and has a
nondeterministic value when it is read. Modeling the behav-
ior of the microcontroller hardware for the analysis instead
of resorting to nondeterminism whenever an I/O register is
accessed is a key for obtaining precise analysis results and
detecting false usage of hardware features such as writing to
reserved registers.

1.2 Contributions
All four challenges are handled by our approach. In sum-

mary, we make the following contributions:

• We describe an interval analysis for binary code sup-
porting both arithmetic and logical instructions by
combining word- and bit-level intervals (cf. Sect. 3 and
Sect. 4). In our approach, we combine word- and bit-
level interval domains based on the reduced product [8]
in order to precisely handle both kinds of operations,
relying on the precision of one domain in case that
precision is lost in the other.

• In microcontroller binary code, addresses of the avail-
able memory are fully determined (the ATmega16 has
1120 bytes of addressable memory), and hence, when
verifying such code, it is not necessary to use symbolic
memory representations: an address will suffice. We
explain how to model indirect reads and stores using
interval abstractions.

• We detail how to integrate conditional branching using
a safe heuristics based on pattern matching and a path-
based fallback solution (cf. Sect. 4.3).

• We explain how behavior of the hardware depending
on its current memory configuration is integrated into
the analysis using the notion of environment trans-
formers, which model the values of I/O registers that
depend on the values of other registers (cf. Sect. 5).

• While a widening approach is not necessary to ensure
termination due to finiteness of the analysis domains,
we describe a simple widening operator for intervals
based on monotone cycles in the program dependence
graph [16] in order to speed up fixed point computation
(cf. Sect. 6).

• We evaluate the performance and precision of our ap-
proach in a case study. In particular, we compare our
results to those obtained for an automotive applica-
tion using model checking. Furthermore, we describe
the integration with static state-space reduction meth-
ods such as dead variable reduction and path reduction
(cf. Sect. 7).



The only prerequisite for our approach is that the binary
program has successfully been disassembled, including a re-
construction of the complete control flow graph, which we
consider reasonable, acknowledging the recent advances in
the field of intermediate-representation recovery [20]. Re-
constructing the control flow is a challenging problem in
itself, but orthogonal to our work.

The remainder of this paper is structured as follows. First,
a short description of preliminaries with respect to abstract
interpretation is given in Sect. 2. Then, Sect. 3 explains the
construction of the analysis domain for word- and bit-level
interval reasoning, followed by a description of the analysis
for the instruction set of the ATmega16 in Sect. 4. This
section also contains an overview of the loop heuristics that
is used in order to infer branching conditions and details
our tactic for handling pseudo-concurrency introduced by
interrupt handlers. In Sect. 5, the concept of environment
transformers to represent hardware-dependent behavior in
the analysis is introduced. A case study that highlights the
effectiveness of our approach is presented in Sect. 7. Finally,
related work is described in Sect. 8.

2. PRELIMINARIES
Our approach for interval analysis is based on the theory

of abstract interpretation [8], which is a methodology that
allows to replace concrete computations with more abstract
ones whilst preserving correctness by construction. The key
idea in abstract interpretation is to simulate the execution of
each concrete operation g : L→ L with an abstract analogue
f : M →M , where L and M are domains of concrete values
and descriptions. In order to keep the paper self-contained,
this section repeats some fundamental results.

Given a set L, a partial order on L is a transitive, reflexive,
and anti-symmetric binary relation v on L. Then, (L,v)
is called a partially ordered set. For L′ ⊆ L, l ∈ L is an
upper (lower) bound of L′ if l′ v l (l v l′) for all l′ ∈ L′. A
least upper bound (greatest lower bound) l′ of L′ is an upper
(lower) bound of L′ that satisfies l′ v l0 (l0 v l′) whenever
l0 is another upper (lower) bound of L′. A complete lattice
is a partially ordered set (L,v) such that all subsets of L
have least upper bounds and greatest lower bounds. For
L′ ⊆ L, the greatest lower bound (least upper bound) of L′

is denoted by uL′ (tL′).
In the following, let (L,vL) and (M,vM ) be complete

lattices. Then (L,α, γ,M) with α : L→M and γ : M → L
is called a Galois connection if α and γ are total functions
and α(l) vM m iff l vL γ(m) for all l ∈ L and m ∈ M .
The function α is called an abstraction and γ is called a
concretization.

Galois connections can be combined in a component-wise
manner using the reduced product operation [8]. Given two
Galois connections (L,α1, γ1,M1) and (L,α2, γ2,M2), the
reduced product is the Galois connection (L,α, γ, ψ(M1 ×
M2)) where α(l) = (α1(l), α2(l)), γ(m1,m2) = γ1(m1) u
γ2(m2), and ψ(m1,m2) = u{(m′1,m′2) | γ1(m1) u γ2(m2) =
γ1(m′1) u γ2(m′2)}. That is, abstraction is performed inde-
pendently, but concretization yields only those elements that
are concretized from both M1 and M2.

The force of this approach is that information lost in one
domain can be recovered from the other upon concretization.
The reduced product will be used in the following to design
an interval analysis that provides enough expressiveness to
handle arithmetic as well as logical operations.

r0
...
r31

TWBR
...
SPL
SPH
SREG
0x0060

...

0x045F

GPR

IOR

SRAM

Figure 1: Memory layout of the ATmega16 micro-
controller

3. ANALYSIS DOMAINS
The ATMEL ATmega16 is an 8-bit microcontroller plat-

form that features 32 general-purpose registers, 64 I/O reg-
isters, and 1024 bytes of SRAM, leading to 1120 address-
able memory locations, which are all mapped to the same
address space (cf. Fig. 1). Furthermore, all registers can
be accessed using both arithmetic and logical instructions,
but the SRAM can only be accessed using word-level copy-
instructions. Consequently, each memory location is repre-
sented by two abstract elements: one interval covering values
between 0 and 255 and one 8-tuple of 0/1 intervals. The con-
struction of these two domains is covered in the remainder
of this section.

3.1 Word-Level Intervals
The domain of word-level intervals consists of elements

[l, u] with l, u ∈ N<256 and l ≤ u, and additionally the empty
interval ∅. We denote this domain, which represents all pos-
sible values of an unsigned 8-bit register, by I256. The join of
two intervals [l1, u1], [l2, u2] ∈ I256 is defined in the natural
way, that is, [l1, u1] t [l2, u2] = [min{l1, l2},max{u1, u2}],
and (I256,t) with least element ⊥ = ∅ and greatest ele-
ment > = [0, 255] forms a complete lattice. A Galois con-
nection (2N<256 , α28 , γ28 , I256) between 2N<256 and I256 with
α28 : 2N<256 → I256 and γ28 : I256 → 2N<256 can be defined
as follows for N ⊆ N<256 and [l, u] ∈ I256:

α28(N) = [min(N),max(N)]
γ28([l, u]) = {n ∈ N<256 | l ≤ n ≤ u}

3.2 Bit-Level Intervals
For each byte of the microcontroller memory, we addi-

tionally introduce a sequence of 8 elements of 0/1 inter-
vals in order to keep track of bitwise operations. In the
following, denote the domain of single bitwise intervals by
I2 = {∅, [0, 0], [0, 1], [1, 1]}. Each memory location consist-
ing of 8 bits is then represented by the cartesian product
of 8 elements of I2, numbered from 0 through to 7. This
domain is denoted by I8×2. Naturally, (I8×2,t) with the
component-wise join of intervals is a complete lattice.



For a formal definition of a Galois connection for relating
concrete and abstract representations, let πi : N<256 → N<2

be a projection of an integer onto the i-th bit in a bit-
wise representation. Moreover, let νi : 2N<256 → I2 be
an auxiliary function that computes minimal and maximal
values for the i-th bit of a set of integers. A Galois con-
nection (N<256, α8×2, γ8×2, I8×2) between N<256 and I8×2

with N ⊆ N<256 and [li, ui]0≤i≤7 ∈ I8×2 can be defined as
follows:

νi(N) = [min{πi(n) | n ∈ N},
max{πi(n) | n ∈ N}]

α8×2(N) = ν0(N)× · · · × ν0(N)

γ8×2(([li, ui])0≤i≤7) = {
∑7

i=0 2i · xi | xi ∈ [li, ui]}

3.3 Combining Word- and Bit-Level Intervals
These representations give rise to the reduced product do-

main for combining word-level intervals I256 and bit-level
intervals I8×2 with N<256. That is, (N<256, α, γ, ψ(I256 ×
I8×2)) according to the definition given in Sect. 2 forms a
Galois connection. In this combined domain, concrete val-
ues are obtained from the abstract representations if and
only if they are contained in both abstract domains. This
property is ensured by construction and is a key for the gain
in precision.

In the following, let P denote the set of all program lo-
cations in the program under scrutiny, that is, P corre-
sponds to the set of instructions. Each program location
has incoming intervals, which are transformed using trans-
fer functions to yield output intervals (often called entry-
and exit-sets). Therefore, the concrete state space of the
program with respect to its collecting semantics is defined
as S = P × (2N<256)1120 × Dir, where Dir = {in, out}. Ac-
cordingly, the abstract state space of the program is defined
as S# = P × (I256 × I8×2)1120 × Dir.

4. INSTRUCTION SET
This section details the abstract interpretation of the pro-

gram under scrutiny (hardware dependencies are ignored for
the time being). First, it describes the semantics for some
instructions of the ATmega16. Afterwards, it explains how
loop conditions are inferred in order to narrow down the
obtained intervals. Finally, this section details the integra-
tion of interrupt handlers for the analysis of interrupt-driven
programs.

Abstract interpretation of the instruction set forms the
basis for Sect. 5, which explains how a model of the hardware
is integrated into this framework. It turns out that hardware
models integrate smoothly with this approach.

4.1 Overview
Each instruction (out of 131) has a well-defined seman-

tics that is given in the instruction-set specification [1]. All
instructions operating on general-purpose registers read at
most two memory locations and write at most one general-
purpose register. Moreover, the status register – which con-
tains the carry, half-carry, interrupt, negative, overflow, sign,
transfer, and zero flag – is altered depending on the result
by some of these instructions. For instance, an arithmetic
instruction such as ADD r0 r1 writes the sum of r0 and r1

into r0 and sets the negative flag (among others) if the most
significant bit of the result is set.

SRAM locations of the microcontroller can only be ac-

cessed by instructions that copy words from SRAM into
general-purpose registers or vice versa. The ATmega16 also
supports indirect read and indirect store operations using
one of three pointer registers X (r26 and r27), Y (r28 and
r29) or Z (r30 and r31), which are combined for 16-bit ad-
dressing. This means, for example, that the address indi-
cated by X is computed as r26 + 256 · r27. The runtime
stack is utilized using the instructions PUSH and POP, which
perform indirect reads/stores using the stack pointer (SPL
and SPH), which is part of the I/O registers.

The control flow of programs is changed by certain con-
ditional branching instructions BRxx k. These instructions
increment the program counter by k+1 or 1 if the corre-
sponding branching condition evaluates to true or false, re-
spectively. Loops in programs are implemented using con-
ditional branching instructions or unconditional jumps with
a target address smaller than the current program counter.

4.2 Semantics
Consider an instruction ADD r0 r1 at a program location

p ∈ P. The instruction transforms a concrete input state
s = (p, d, in) ∈ S into an output state s′ = (p, d′, out) ∈ S,
where only the values of register r0 and certain bits of the
status register SREG in d are mutated to yield d′. Overall,
the instruction has the following concrete semantics, where
the output variables are primed, mk denotes the k-th bit of
a memory cell m, and symbolic names for the status bits are
used:

r0′ ← r0 + r1

SREG′zero ←
∧7

i=0 ¬r0
′
i

SREG′carry ← r07 ∧ r17 ∨ r17 ∧ ¬r0′7 ∨ ¬r0′7 ∧ r07

SREG′negative ← r0′7
SREG′overflow ← r07 ∧ r17 ∧ ¬r0′7 ∨ ¬r07 ∧ r17 ∧ r0′7
SREG′sign ← SREG′neg ⊕ SREG′overflow

SREG′half-carry ← r03 ∧ r13 ∨ r13 ∧ ¬r0′3 ∨ ¬r0′3 ∧ r03

SREG′transfer ← SREGtransfer

SREG′interrupt ← SREGinterrupt

All other values remain unchanged by this instruction. Note
how this approach takes care of overflows by performing the
addition in the concrete semantics. For instance, adding the
intervals [0, 1] and [254, 255] yields >. For indirect store
instructions, however, the target of the instruction is deter-
mined through the contents of the corresponding pointer
register. In the concrete case, such instructions perform
strong updates. Due to the over-approximation, indirect
stores may overwrite a memory location but are not guar-
anteed to. Consequently, the original results of the register
are joined with the new contents but not replaced. As an
example, consider an instruction such as STPI X r0, which
stores the value of r0 in the memory cell indicated by regis-
ter X and then post-increments X. The address indicated by X

is denoted by JXK, leading to the following concrete transfer
function:

JXK′ ← JXK ∪ r0

X′ ← X + 1

The semantics for indirect reads is defined accordingly. Note
that this modelling is also applied to instructions affecting
the runtime stack such as PUSH, POP, CALL, and RET. This
way, concrete transfer functions for the complete instruc-
tion set can be specified, which are denoted by ϕp : S → S
for each p ∈ P. Naturally, program analysis by means of
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Figure 2: Abstract interpretation for instruction-set
semantics

abstract interpretation is then performed using the sequen-
tial composition of concretization and the concrete transfer
function followed by abstraction. This yields an abstract
transfer function ϕ#

p : S# → S# with:

output(p, d#, dir) = (p, d#, out)
ϕ#

p (p, d#, in) = output((α ◦ ϕp ◦ γ)(p, d#, in))

This situation is depicted in Fig. 2. The sole purpose of
function output is the renaming of states, from entry-sets to
exit-sets. Given the control flow graph (P, E) of a program,
an abstract transition relation that joins the output states
of all p ∈ P in order to yield the input state of p′ ∈ P iff
(p, p′) ∈ E can easily be generated. The solution to this
system is then computed using fixed point iteration.

4.3 Loop Conditions
In high-level programs, conditionals are easily obtained

from the program’s abstract syntax, and then used to con-
strain values of variables on certain execution paths. In
binary code, extracting the conditionals is more difficult be-
cause these are implemented using a sequence of instructions
and a branching instruction that depends on certain status
flags. The meaning of the status flags and their combina-
tions depends on instructions executed before: The flags
alone do not resemble any semantic information. Addition-
ally, interrupt handlers may interfere with this sequence.

The instruction-set specification of the ATmega16 sug-
gests to implement conditional branching using so-called
compare instructions: CPI (compare to immediate), CP (com-
pare to register), and CPC (compare to register with carry).
These are followed by a branching instruction. The first
operand of a compare instruction is a register r, and the
second operand is either a register p or a constant value k.
The instructions then compute r-p, r-k, or r-p-carry, re-
spectively, but the result is not stored. Only status flags are
mutated according to the result. The branching instruction
then evaluates the status flags. A statement such as if (x

== 0), where x is a 16-bit integer (stored in registers r24

and r25), for example, is translated into a sequence such as
LDI r0 0; CPI r24 0; CPC r25 r0; BREQ 3.

In order to take value range restrictions stemming from
such conditionals into account, pattern matching is per-
formed to recognize the most frequently found branching
sequences. Then, constraints are added, depending on the
pattern found. For the above equality condition, for in-
stance, value range restrictions r24 u [0, 0] and r25 u [0, 0]
are added to the outgoing then-edge. This approach requires
that interrupts are turned off in the sequence. Otherwise,
it is possible that the first compare instruction is executed,
the value of the corresponding register is then mutated by
an interrupt handler, which invalidates the constraints.

Hand-written assembly code and certain compiler-gene-
rated code, however, often do not implement conditional
branching using these patterns. Consequently, a computa-
tionally more expensive approach is required to handle such
cases and recover semantic information. Our method in-
volves statically identifying all possible paths that influence
the status flags and simulating each of these paths in the
concrete semantics where it is required in order to deter-
mine which branch is taken. This approach is explained in
the following using an example.

Consider a C code fragment such as x = ~(1� c) where
c and x are 8-bit variables. While this appears to be a se-
quence of two primitive expressions in C, it is translated into
a loop in binary code because the AVR instruction set only
supports shifting by a constant value (see Fig. 3). This code
essentially initializes x (r24) and doubles its value c times in
a loop. Here, c is stored in register r18. The loop terminates
once the highest bit of c is set in instruction 0x99, that is,
decrementing r18 yields a negative number in two’s com-
plement (the negative flag is cleared). Afterwards, the COM

instruction is executed to compute the bitwise complement.
In the example in Fig. 3, there exists a single relevant

path for the branching instruction, consisting only of the
instructions at 0x98 and 0x99. Suppose that the interval
analyzer has inferred that r18 ∈ [1, 1] before DEC r18. The
abstract interpreter then reaches BRPL -3 for the first time:
It evaluates the path with the concrete input value 1 for r18
and adds 0 to the output set for the case that the negative
flag is cleared. No value causes the negative flag to be set.
Then, when the abstract interpreter visits the instruction at
0x99 again, the interval analyzer will have computed r18 ∈
[0, 1] before DEC r18. Now, the concrete assignment r18 = 0
before DEC r18 causes the negative flag to be set in BRPL

-3, and the resulting value r18 = −1 is added to the else-
successor of the BRPL -3 instruction.

In general, paths of interest are determined as follows:
Starting from the branching instruction, the definition-use
chain for the negative flag is evaluated to yield those instruc-
tions that write its value. If the outcome of the previous
instructions depends on the value of a status flag itself, the
definition-use chain is evaluated in order to find fresh rel-
evant predecessors. The evaluation of definition-use chains
is repeated until one of the following termination criteria
holds: (1) The value computed by the respective instruction
can be determined from a set of register values because the
interval analyzer has already produced an approximation of
these values, or (2) a cycle in the relevant path is detected.
Condition (2) guarantees termination.

This way, a set of paths that need to be evaluated is dis-
covered. Each such path π = p0 . . . pn, where pn represents
a branching instruction, is analyzed in the concrete program
semantics with the possible input assignments. Concretiza-
tion of values is performed on-the-fly, triggered by the in-
struction semantics. After pn has been analyzed, it is eval-
uated whether the branching condition is satisfied or not.
Depending on the outcome, the computed concrete values
are either added to the then- or to the else-path and ab-
stracted afterwards.

Similar ideas, namely performing a concrete execution of
certain paths to recover precision lost in the symbolic/ab-
stract domain can also be found in the field of concolic
testing [3]. A technically more involved approach to han-
dling this problem would be to encode identified paths in a



0x94: LDI r24 1 ; x <- 1

0x96: RJMP 1 ; jump to 0x99

0x97: ADD r24 r24 ; x <- x*2

0x98: DEC r18 ; c <- c-1

0x99: BRPL -3 ; branch if positive

0x9a: COM r24 ; x <- ~x

Figure 3: C statement x = ~(1 � c) compiled into
AVR assembly

bit-vector theory and either use CLP- or SAT-based solvers
for computing range information as performed by Bardin et
al. [4].

4.4 Interrupts
Computing the least fixed point for single threaded pro-

grams is straightforward using standard techniques based on
the control flow graph. However, microcontroller programs
are typically interrupt-driven. This means that whenever
interrupts are enabled, an interrupt may fire and the cor-
responding interrupt handler is executed, which most likely
has an effect on the execution of the main process. It is im-
portant to note that the firing of a nondeterministic inter-
rupt is optional because it depends on the environment. In
the following, we briefly explain our strategy for computing
least fixed points in the presence of (pseudo-) concurrency
introduced by interrupt handlers:

1. In a first step, the least fixed point of the main process
is computed. This gives a first approximation of the
global interrupt flag, which is stored in the highest bit
of the status register.

2. For each instruction p of the main process where the
global interrupt flag may be set, all interrupt handlers
are executed using the context of p, and their results
are joined with analysis results in p until a fixed point
is reached.

Note that the execution of an interrupt handler may influ-
ence the main process. Consequently, the first approxima-
tion of the global interrupt flag is not necessarily an over-
approximation of the actual values, and the execution of
interrupt handlers may lead to larger analysis results for the
main process. During startup of the microcontroller, how-
ever, interrupts are disabled and have to be enabled by the
main process before an interrupt can fire. Thus, the second
step is repeated using a worklist algorithm until a global
fixed point of the main process is reached.

Moreover, performing a context-sensitive analysis of inter-
rupt handlers is particularly important in order to suppress
the propagation of information stemming from one instruc-
tion into another instruction through an interrupt handler.
In our approach, each interrupt handler is analyzed from the
context of the corresponding instruction only. This implies
that detecting a fixed point of the main program suffices for
termination detection.

5. HARDWARE MODEL
The technique described so far ignores hardware depen-

dencies such as those of the I/O ports described in Sect. 1.
In order to take care of such dependencies, we introduce an

input outputS#

S S S

S#

γ

ϕp λ

α

Φ#
p

Figure 4: Abstract interpretation including environ-
ment transformer

additional environment transformer λ : S → S. Hardware-
dependent behavior is only possible for certain I/O registers.
For example, the pin register PINA depends on the values of
the corresponding data-direction register DDRA and the port
register PORTA. The general-purpose registers as well as the
SRAM behave deterministically.

An environment transformer extracts the state of influenc-
ing registers, which are I/O registers as well, and produces
a corresponding output state. Let ϕp : S → S denote the
concrete transfer function of some program location p ∈ P,
converting an input into some output (cf. Sect. 4). Then,
λ◦ϕp : S → S defines a concrete transfer function including
hardware behavior, which yields an abstract transfer func-
tion Φ#

p : S# → S# (cf. Fig. 4) as follows:

Φ#
p (p, d#, in) = output((α ◦ λ ◦ ϕp ◦ γ)(p, d#, in))

The advantage of this method is that it provides a separa-
tion of concerns: The hardware model is separated from the
semantics of instructions. As an example, consider the I/O
port A and its corresponding I/O registers DDRA, PINA, and
PORTA, which behave as explained in the introduction. The
environment transformer models the behavior of the i-th bit
of the PINA register as follows:

PINA′i ←

{
PORTA′i : DDRA′i = 1

{0, 1} : otherwise

Note that this approach allows modeling the hardware at
an arbitrary level of detail, where mapping the input to >
generates a safe over-approximation. In our model, for in-
stance, we have abstracted from timers as the analysis itself
is not cycle-accurate. On the other hand, we have modeled
I/O ports in all their details, as well as strictly deterministic
I/O registers such as the stack pointer or the status register.

6. WIDENING
As a motivation for applying a widening operator during

static analysis, consider the program given in Fig. 5. The
program loads bytes from program memory into r0 using
the Z pointer register and then copies r0 into the address
indicated by the X register. Effectively, the program copies
two bytes starting from program memory address 100 into
the SRAM addresses 96 and 97. The CFG of the program
fragment is given in Fig. 6.

The interval analyzer infers that X ∈ [96, 97] and Z = >
hold before instruction 0x49 is executed, which is a well-
known drawback of non-relational analyses. While stabiliza-
tion is ensured due to the finite ascending chain condition
that holds for our interval domains, many iterations are re-
quired until the result Z = > is eventually reached. While
this typically is no problem on 8-bit microcontrollers due to



0x39: EOR r0 r0 0x45: CPC r27 r0

0x40: LDI r26 96 0x46: BRNE 1

0x41: EOR r27 r27 0x47: RET

0x42: LDI r30 100 0x48: LPMPI Z r1

0x43: EOR r31 r31 0x49: STPI X r1

0x44: CPI r26 98 0x4a: RJMP -7

Figure 5: Copy two bytes from program memory
into SRAM
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0x41
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0x43
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0x4a

0x49

0x48

Figure 6: CFG of the program in Fig. 5

small domains, it can easily lead to a performance hit on
16- or 32-bit platforms. In this section, we propose a widen-
ing method that performs a-priori widening of Z in order to
accelerate stabilization.

A program dependence graph (PDG) is a directed graph
with vertices corresponding to instructions and control pred-
icates (conditional branches), and edges corresponding to
data and control dependences. Often, PDGs are used in
static slicing [16], where all vertices reachable from some
predefined slicing criterion (the vertex under consideration)
are considered the slice. Therefore, PDG representations of
programs are available in most static analyzers already.

We propose to perform widening based on an annotated
data dependence graph (ADDG). An ADDG is essentially
a PDG consisting only of data dependencies, and addition-
ally vertices are annotated with monotonicity information
about the corresponding instructions. The key idea of this
representation is to determine registers that will result in
the complete interval > a-priori. Monotonicity informa-
tion for each written memory location is represented by an
annotation m ∈ M = {+M,−M, ?M}, where +M repre-
sents monotone increasing instructions and −M represents
decreasing operations. Unknown or non-monotonic modifi-
cations are denoted by ?M. Here, it is important to note
that the analysis domain is unsigned. Each vertex – that
is, each instruction – is annotated with monotonicity infor-
mation about the altered memory locations and the kind of
monotonicity, leading to annotations that are pairs (v,m) for
variables v and m ∈ M. For instance, vertices representing
INC r0 or STPI X r0 are annotated with (r0,+M), while a
vertex representing EOR r0 r1 is annotated with (r0, ?M).
Moreover, restrictions on intervals emerging from branching
conditions (cf. Sect. 4.3) induce a non-monotonic data de-
pendence. Consequently, the respective vertex is annotated
with ?M.

Our widening techniques identifies cycles in the data de-
pendence edges of the ADDG, where all modifications of v
are annotated with the same monotonicity information m.
These cycles correspond to an unbounded monotone modifi-

Table 1: Performance of interval analysis
Program LoC # IHs Runtime Dead code

light_switch 162 0 0.52s ×
plant 243 2 1.24s X
traffic_light 218 0 2.41s ×
window_lift 225 3 1.49s X

cation of v in the non-relational domain, which yields v = >
eventually. In case that such a cycle exists, the initial con-
figuration of v is set to > before the interval analyzer is
executed. Of course, this is a sufficient, but not a necessary
condition. The detection of monotone cycles can be imple-
mented as a straightforward modification of Tarjan’s algo-
rithm for computing strongly connected components [28].

Note, however, that the ADDG is an under-approximation
of the possible dependencies due to indirect stores and reads.
Since indirect stores/reads are modeled as weak updates,
such instructions cannot break a monotone cycle.

The ADDG for the program in Fig. 5 is depicted in Fig. 7
with the relevant edges and vertices highlighted. Here, the
status flags are omitted for clarity. The monotone self-loop
for Z in instruction 0x48 in the ADDG is highlighted, and
consequently, Z is initially widened to >. In contrast, X is
not widened because the branching condition induces a data
dependency with unknown monotonicity, therefore break-
ing the monotone cycle, which is emphasized using dashed
lines.

7. CASE STUDY
This section evaluates the presented analysis with respect

to performance, precision, and the effects on state-space re-
duction methods in model checking. The case studies were
conducted on an IBM ThinkPad T60p, equipped with a 2.33
GHz dual-core processor and 4 GB of RAM.

7.1 Performance
The runtime for all our standard benchmarks (see Tab.

1) was less than 2.5 seconds. Moreover, it can be observed
that the presence of interrupt handlers does not noticeably
influence the performance of the analysis. It turns out that
most of the runtime is spent copying and comparing states
for fixed point detection because complete states, consisting
of 1120 abstract elements, have to be compared in many
cases.

Our original Java implementation of the bitwise analysis
required a long runtime. Two char variables were used to
store lower and upper bounds for a single bit. This runtime
could be reduced by a factor of 5 by storing lower and upper
bounds for an element of I8×2 in two char variables, allow-
ing join, meet, and inclusion to be computed using compu-
tationally cheap bitwise operations.

7.2 Precision
Previously, Schlich [26] has detailed a case study of the

program window_lift. The program implements a state
machine that controls the operation mode of a window lift,
which is stored in an unsigned 8-bit variable mode. Over-
all, the state machine has seven different modes and by its
specification, the value of mode must always be less than
or equal to 6. The value of mode is altered by the main
process and in each of three interrupt handlers of the pro-



r30 in 0x42 r26 in 0x40 r0 in 0x39 r27 in 0x41 r31 in 0x43

r26 in 0x44 r0 in 0x45 r27 in 0x45

constraint on 
r26 in 0x46

r26 in 0x49 r1 in 0x49 r27 in 0x49
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Figure 7: Data dependences in PDG (left) and ADDG (right) of the program given in Fig. 5

gram. Verifying this program without any abstraction took
62 seconds. While the runtime could be reduced to approx-
imately 6 seconds using different static and dynamic ab-
straction techniques, the development and implementation
of these techniques took several years. Despite these efforts,
model checking using [mc]square is still very susceptible
to state explosion, which is not the case for our abstract
interpreter.

This invariant is formally specified in CTL as AG (0 ≤
mode ∧ mode ≤ 6). In the compiled binary, mode is placed at
location 0x0061 in the SRAM of the microcontroller. The
combined interval analysis infers that mode ∈ [0, 6] in any
program location, and hence, the same invariant is also ver-
ified through static analysis. This is not possible if only
either word- or bit-level intervals are used. Word-level in-
tervals infer that mode ∈ [0, 255] because bitwise loop con-
ditions are not handled properly. On the other hand, using
bitwise intervals only infers that mode ∈ [0, 7]. Other tem-
poral properties verified using model checking in [26] require
combinations of temporal and path operators, and thus, can-
not be proven using our method. As byproducts, the interval
analyzer infers that only global variable are accessed using
indirect writes and that the maximum stack size is 7. These
results are equal to those that can be observed using model
checking.

The program light_switch contains two global variables
that store the mode of the light switch and the current
brightness. The interval analyzer was able to infer that both
variables remain within range and that indirect stores/reads
only access these global variables. Finally, we have validated
the safety of our implementation by comparing the results
produced by the interval analyzer to state spaces built using
[mc]square.

7.3 Optimization
During our case studies, we observed that the compiler

inserts code for fallback branches into code generated from
switch-case statements. The Avr-Gcc compiler attempts
to implement switch-case statements by means of nested
branches instead of indirect jumps using a jump table loca-
tion in the program memory. In many cases, our approach
was able to infer that these branches are dead code because

the branching condition for the fallback-branch is never sat-
isfied. Moreover, during startup, the compiler implements
a fixed pattern comparable to the loop given in Fig. 5 for
initializing global variables using values from the program
memory. This code is also contained in the compiled binary
if the program does not contain any global variables and the
loop is never entered. The programs for which dead code
could be detected using interval analysis are highlighted in
Tab. 1.

These results suggest that our approach could also be used
for compiler optimization, which is particularly important
in embedded systems software, where software is executed
under tight performance, memory, and energy constraints.
Such an application of assembly code analysis to code opti-
mization has recently been described by Yang et al. [29].

7.4 Application to State-Space Reductions
We have integrated interval analysis into [mc]square,

which is an explicit-state model checker for several micro-
controller platforms. In [mc]square, several abstraction
techniques are used to reduce state spaces during model
checking. This includes adaptations of well-known tech-
niques such as dead variable reduction (DVR) and path re-
duction (PR) [30]. In the following, we briefly describe how
the applicability of DVR and PR for binary code verification
is affected by our approach.

7.4.1 Dead Variable Reduction
The idea of DVR is to reset variables during state-space

generation that are not live, that is, variables whose value is
not going to be read in the future before it is overwritten. On
binary-code level, this technique suffers from indirect reads
in case that target addresses of such reads are unknown:
The analysis has to assume that any memory location could
be accessed, and therefore, all memory become live. This
reduces the effectiveness of DVR.

In Sect. 7.2, we have described and evaluated the preci-
sion of our analysis with respect to the pointer registers.
By integrating these results into live variables analysis, a
reduced number of live memory locations is obtained and
DVR yields better results. The improvement can be in or-
ders of magnitude, depending on the program. For a pro-
gram called vector, consisting of 930 instructions, combin-



ing the techniques reduced the state space from more than
4, 000, 000, 000 states to 917, 458 states. Many memory loca-
tions could be reset early, which caused numerous different
states to be merged, eliminating a source for the exponential
growth of state spaces.

7.4.2 Path Reduction
The application of PR causes state-space reductions by

collapsing single-successor chains in the state space into sin-
gle nodes. Boundary nodes of such single-successor chains
are called breaking points and determined using a static anal-
ysis. Here, we name only two conditions for breaking points
that are affected by interval analysis: Reading nondetermin-
istic input and writing atomic propositions leads to break-
ing points. However, as with DVR, this technique also suf-
fers from indirect writes and the lack of a precise hardware
model.

Without knowledge about pointer registers, it has to be
assumed that any program location could be accessed by an
indirect store operation, and therefore, every indirect write
is marked as a breaking point in order to generate an over-
approximation. To name only two situations, without inter-
val analysis every call instruction is a breaking point because
a return value is indirectly stored on the stack, and there are
several breaking points in each interrupt handler that saves
the context on the stack.

Furthermore, whenever an I/O register is read, the value
read is assumed to be nondeterministic, which also generates
an over-approximation: Recall our explanation on I/O ports
and the dependency between data direction registers and
port registers. The integration of interval analysis results
and the hardware model with PR leads to fewer breaking
points, and thus, to smaller state spaces.

8. RELATED WORK
Interval analysis has long been used in program analysis

and abstract interpretation [8], particularly in the context of
high-level programming languages. To name only one exam-
ple, the approach of Gawlitza et al. [13] is used in Goanna
to prune out false paths during static analyis [12].

Probably the most prominent platform assembly and bi-
nary code analysis is CodeSurfer/x86 as described by Bal-
akrishnan et al. [2, 25]. In their approach, intervals are
used in combination with other domains such as congru-
ences for the analysis of x86 executables. However, their
approach is based on a symbolic memory representation
and neglects soundness, which is reasonable for bug-finding
frameworks but infeasible in the context of verification of
safety-critical systems. Another low-level pointer analysis
for x86/assembly code was described by Debray et al. [11],
where adresses are represented as congruence values, but
they only keep track of low-order bits of registers and all in-
formation is lost whenever addresses are written to the main
memory. Guo et al. [14] perform a flow-sensitive pointer
analysis only for registers, but memory locations are treated
in a flow-insensitive manner.

Numerous special-purpose analyses for microcontroller as-
sembly code have been developed. For example, stack size
analysis for AVR microcontrollers was described by Regehr
et al. [24]. The interval analysis described in this paper
produces exactly the same results as a byproduct. Their
analysis relies on the assumption that indirect stores access
only the SRAM and do not alter I/O registers such as the

stack pointer registers SPL and SPH or the status register.
This assumption can be proven to be valid by our approach.
To the best of our knowledge, our approach is the first that
proves the safety of indirect stores on microcontroller plat-
forms using static analysis since it guarantees that no I/O
registers are accessed. Several other techniques, such as the
slicing approach for x86 binary code described by Cifuentes
and Fraboulet [6], ignore the effects of indirect writes, ren-
dering them unsound, where the integration of our method
could be used to provide information about pointer values.

The widening operator [9] described in Sect. 4 can be seen
as an adaptation of the widening approach used by Gawlitza
et al. [13]. In their method, interval analysis is performed
using an extension of the Bellman-Ford algorithm, where cy-
cles of negative weight are identified in order to perform a
widening of the interval boundaries. In contrast, our widen-
ing approach explicitly identifies monotonely ascending cy-
cles based on an annotated version of the PDG.

Not strictly related to our approach, where static cycle
detection is performed in order to speed-up convergence of
the analysis, (dynamic) cycle detection is also employed in
other fields such as flow-insensitive pointer analysis in or-
der to guarantee convergence [23]. While flow-insensitive
pointer analyses have proven to be useful for high-level pro-
grams [15], such techniques do not provide meaningful re-
sults for AVR microcontrollers because all indirect stores
and reads are performed using one out of three pointer reg-
isters: The result will most likely be a single equivalence
class of pointer values.

9. CONCLUSION

Summary.
In this paper, we have described how word- and bit-level

interval analysis can be combined in order to obtain precise
results for binary code that uses both arithmetic and logical
operations. Furthermore, we have detailed an analysis of
branching conditions and how hardware dependencies can
be integrated into the abstract interpretation framework. In
order to accelerate convergence, we have sketched an offline
widening approach based on PDGs.

The effectiveness and performance of the approach was
evaluated in a case study. Moreover, we have described the
integration of interval analysis with state-space reduction
methods.

Future Work.
One aspect of future work is the support for other mi-

crocontrollers of the AVR-family, which can be achieved by
adjusting the hardware model and the state space. Support-
ing the ATMEL ATmega128, for instance, would allow us to
analyze programs written for TinyOS. From our experience
with different microcontroller platforms, we do not expect
any major difficulties porting the analysis to other target
platforms.

Since the described analysis is non-relational, it fails to
discover relationships between registers such as r0 is in-
cremented iff r1 is decremented, which sometimes leads to
unbounded values of variables altered monotonely in loops
without being restricted by loop conditions. Such over-
approximations are then propagated through the analysis.
In the future, we want to integrate different relational anal-



yses in order to narrow down the results. This approach is
also followed by several static analyzers for high-level lan-
guages such as F-Soft [18] or Astree [10].

On the classical side, well-studied analyses for affine re-
lationships [19] could serve as a basis for this work. As
an example, consider that our interval analyzer infers that
r0 ∈ [96, 98] and r1 ∈ [0, 255], while an affine relationship
r1 = 50+r0 is discovered. Combining these results allows to
derive that r1 ∈ [146, 148]. Another interesting domain are
congruences, for which there has been a resurgence of inter-
est as they capture the effects of overflows that are natural
to machine arithmetic [21, 22]. Evaluating the suitability of
other (weakly) relational domains such as interval polyhe-
dra [5] and logahedra [17] for binary code analysis appears
to be interesting as well.
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