
View-Supported Rollout and Evolution of
Model-Based ECU Applications

Andreas Polzer
Embedded Software

Laboratory
RWTH Aachen University

Aachen, Germany
polzer@cs.rwth-

aachen.de

Daniel Merschen
Embedded Software

Laboratory
RWTH Aachen University

Aachen, Germany
merschen@cs.rwth-

aachen.de

Jacques Thomas
Daimler AG

Group Research & Advanced
Engineering

Böblingen, Germany
jacques.thomas@daimler.com

Bernd Hedenetz
Daimler AG

Group Research & Advanced
Engineering

Böblingen, Germany
bernd.hedenetz@daimler.com

Goetz Botterweck
Lero – The Irish Software

Engineering Research Centre
Limerick, Ireland

goetz.botterweck@lero.ie

Stefan Kowalewski
Embedded Software

Laboratory
RWTH Aachen University

Aachen, Germany
kowalewski@cs.rwth-

aachen.de

ABSTRACT
When applying model-based techniques to the engineering
of embedded application software, a typical challenge is the
complexity of dependencies between application elements.
In many situations, e.g., during rollout of products or in
the evolution of product lines, the understanding of these
dependencies is a key capability. In this paper, we discuss
how model-based techniques, in particular, model transfor-
mations can help to reduce the complexity of such analysis
tasks. To this end, we realised a representation of Simulink
models based on the Eclipse Modeling Framework (EMF).
The resulting integration allows us to apply various model-
based frameworks from the Eclipse ecosystem. On this basis
we developed a view that increases the visibility of functional
dependencies, which otherwise would have been hidden due
to a lack of abstraction in the native Simulink representation.
The provided analysis framework comes in handy, when such
a model has to be modified. Consequently, the developer
is supported in reusing existing models and avoiding errors.
The concepts and techniques are illustrated with a running
example, which is derived from a real industry model from
Automotive Software Engineering.

Keywords
Model-based development, variability, Matlab Simulink, au-
tomotive software, model transformation, ATLAS Trans-
formation Language (ATL), Epsilon Translation Language
(ETL)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOMPES ’10, September 20, 2010, Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0123-7/10/09 ...$10.00.

1. INTRODUCTION
Model-based development (MBD) of ECU applications has

become an established methodology for automotive electron-
ics. The behaviour of the application (e.g., exterior light
control, 12V power network management) is first modelled
using, e.g., Target Link, then ECU code is automatically
generated. Finally, the code is integrated into the runtime en-
vironment of the ECU. Nowadays, the challenge is no longer
to introduce such methods and techniques, but to manage
the application including legacy versions and current product
variants over many years. In doing so, one has to consider
many different types of artefacts, for instance, the Simulink
model, the requirements specification and the corresponding
tests.
In the automotive industry MBD is often used in connec-

tion with a rollout of an application in different car lines.
Although the reuse level across car lines is high, some differ-
ences cannot be avoided nevertheless. Moreover, the applica-
tion is continuously developed, because of enhancements or
newly introduced features. Consequently, there is the major
challenge of managing consistent artefacts over time and
car lines. With each change or new variant, the application
developer is confronted with questions like: “Which func-
tions are there already in the application?”, “What are the
dependencies between them?”, “What effect will a change
in requirements / a Simulink subsystem have?”, “Are there
some other requirements/Simulink subsystems concerned?”,
“Which consequences will result for the corresponding tests?”,
or ”How can we ensure that the artefacts stay consistent de-
spite the change?”. Answering such questions today can only
be done by an experienced application expert and involves
complex searches in a large number of potentially involved
artefacts.
To address these challenges, we propose to support devel-

opment and variability handling using model-driven technolo-
gies. In particular, we apply technologies from the Eclipse
ecosystem, such as the Eclipse Modelling Framework (EMF)
and corresponding model transformation languages. The

Simulink Model

Xtext

Transformation

ETL Expand

Transformation

TransformationTransformationTransformation

ETL Graphical

Transformation

<name>.mdl

EMDL Raw Model

inputXtext.emdl

EMDL Base Model

base_model.emdl

Graphical EMDL Model

gmf_model.emdl

EMDL View Model

view_model.emdl

Basic Transformation Advanced Transformation Graphical Transformation

Figure 1: Overview of the transformation concept

main idea is to import original artefacts (as used in MBD
industry practices) into an EMF-based representation and
subsequently apply techniques, which are available in Eclipse-
based frameworks. For instance, with such techniques an
artefact can be analysed directly or combined with other
artefacts for cross-artefacts analyses.
Out of the many involved artefacts, in this paper we focus

on the Simulink model. We will first describe the model
transformation concept, then we provide an analysis example
producing another view of the model applying this concept.
Finally we evaluate the concept in the context of benefit for
industries.

2. TRANSFORMATION CONCEPT
To answer the questions raised in Section 1 we have de-

veloped a transformation concept, which is visualised in
Figure 1.
The transformation concept consists of three main steps

each of which is dedicated to a specific task in the process.
First of all the Simulink model is imported into the EMF
world during the basic transformation step and enriched
with additional logical information. This step is described
in more detail in Section 2.1. The result is a model that
we call EMDL Base Model as we use it as input for further
advanced transformations (cf. Section 2.2). These advanced
transformations lead to models that represent special task-
specific views of the original Simulink model. Such a “view
model” can subsequently be transformed to a “GMF model”
during the graphical transformation process described in
Section 2.3 to be visualised.

2.1 Basic transformation
To explain the benefits of the basic transformation step, we

will focus on lines that are connecting blocks in a Simulink
model as they are the central element to identify those blocks
which are transporting a signal and are potentially affected
by the signal. For instance, in the very simple Simulink

model visualised in Figure 2 we might be interested in which
blocks are affected if the constant signal of block "Constant
2" changes. To automate this task we have to analyse the
Simulink model text file, which includes all information about
the different blocks, their connections, signal flows, graphical
positions and so on.
If we want to perform such analysis, the original format

of the text file is problematic as an input, because some
of the necessary information mentioned above is available
only in an implicit form. That is the reason why the task
of identifying lines which are connected to block Constant
2 in Figure 2 becomes quite complicated as illustrated in
the following. Each line can be connected either directly
to a block or to a port of a block. Lines and blocks are
independent objects which are represented in the model
file with a keyword (“Line” / “Block”) followed by a body
surrounded by curly braces “{}”. All entities are just listed
in a linear order without a logical or hierarchical structure.
Listing 1 illustrates how a line between the Simulink blocks
Constant 2, Module A, Module C and Output Interface of
the Simulink model in Figure 2 is represented in the original
Simulink model file.

1 Line {
2 [. . .]
3 SrcBlock " Constant 2 "
4 SrcPort 1
5 [. . .]
6 Branch {
7 [. . .]
8 Branch {
9 DstBlock " Module C"

10 DstPort 1
11 }
12 Branch {
13 [. . .]
14 DstBlock " Output I n t e r f a c e "
15 DstPort 4
16 }
17 }
18 Branch {
19 DstBlock " Module A"
20 DstPort 1
21 }
22 }

Listing 1: A line as represented in the original
Simulink file
Answering the previously mentioned question is problematic
with this structure. For example, if we would like to retrieve
all blocks that are linked by lines to the block Constant 2
directly or indirectly via further blocks (which is generally a
frequent task when identifying blocks affected by a signal) we
first have to pick this block in the model file and retrieve its
name (here Constant 2). Then, we have to iterate through
all lines beginning at this block (i.e., which have an attribute
“SrcBlock” with this name as value).

One of these lines is displayed in Listing 1. The names of
the blocks which are directly connected to Constant 2 will
then be all DstBlock entries which appear in the line body of
these lines. In order to identify blocks connected with block
Constant 2 indirectly we would have to look for the names
of the destination blocks (DstBlock) of all lines which the
condition SrcBlock=“Constant 2“ holds for. After this we
have to repeat the whole process recursively on the resulting
destination blocks.
In summary, the flat structure and textual storage format

of original Simulink files, impedes efficient traversal and
analysis of the model. This is not a suitable basis when

Subsystem1

In1 Out1

Output Interface

In1

In2

In3

In4

Module C

In1 Out1

Module B

In1 Out1

Module A

In1 Out1 Goto

[A]

From

[A]

Constant 2

1

Constant 1

1

Bus

Selector

Bus

Creator

b

X
a

<a>

Figure 2: A Simulink model to be analysed

aiming to understand and analyse an ECU application, even
if such analysis is performed with tool support.
To overcome this obstacle, we decided to explore techniques

that would turn implicit information into explicit objects,
such that queries on the Simulink model can be implemented
and performed more elegantly and efficiently. In order to
do so, we created a parser within the Xtext framework [10].
This parser turns a given Simulink model file in the original
.mdl format into an EMF-based representation, which is
stored in XMI (XML Metadata Interchange), a common in-
terchange format for EMF models. This document conforms
to an EMDL metamodel, which we defined to capture all
information given by the Simulink model. Furthermore, we
extended this metamodel by additional logical and hierar-
chical information, which facilitates analyses. Connections
between blocks and lines, for example, will then be easier to
address.
The Xtext parser is started via an Xtext workflow script.For

the given Simulink model line in Listing 1 it generates the
output shown in Listing 2.

1 <mdlLines name=" b ">
2 [. . .]
3 <branches>
4 <branches>
5 <d e s t i n a t i o n P o i n t e r = " Module C"/>
6 </branches>
7 <branches>
8 <d e s t i n a t i o n P o i n t e r = " Output I n t e r f a c e "/>
9 [. . .]

10 </branches>
11 [. . .]
12 </branches>
13 <branches>
14 <d e s t i n a t i o n P o i n t e r = " Module A"/>
15 </branches>
16 <s o u r c e P o i n t e r = " Constant 2 ">
17 </mdlLines>

Listing 2: A line as represented after Xtext
transformation

Up to this point we have just translated the original
Simulink model file one-to-one into the new EMDL Raw
Model file, which conforms to the defined meta model. As
we mentioned before some important information is implicit
in the Simulink model and cannot be addressed directly.
This information is still implicit in this EMDL Raw Model.
For analyses purposes it is desirable to abstract from tech-
nical details to make the required information explicit. For

Figure 3: The structure of logical entities which fa-
cilitate the transformation process

the line displayed in Listing 2 an abstraction would not use
the quite technical construct of branches. Instead it would
just describe a logical line with one source and many targets
(which would be references to the corresponding target blocks
reached by this signal). Therefore we identified the follow-
ing logical entities which become relevant in this context
and which are created during a further transformation (ETL
Expand Transformation):

1. Logical ports

2. Logical lines

3. Logical signals

4. Signal transporters

Figure 3 illustrates a part of the metamodel describing the
relationships between these logical entities.

2.1.1 Logical ports
Each line in a Simulink model is connected either directly

to blocks or to ports of blocks. In our enhanced model we
facilitate this by introducing logical ports which belong to
a block. Logical lines can then only be connected to logical
ports. So in this context we do not have to distinguish
between blocks and ports as endpoints of lines in a Simulink
model. A logical port can either be a logical inport or a
logical outport depending on whether a port is a line’s target
or source.

Figure 4: A logical line that abstracts from details
of a Simulink model line

2.1.2 Logical lines
As mentioned before, in the EMDL Raw Model connecting

lines between blocks are still represented in a quite technical
manner. In other words, each line has exactly one source
and one explicit target but it can contain many branches
where further lines branch off (see Listing 2). This construct
of branches is not necessary as it does not introduce more
semantical information into the model useful for analysing
signal flow.
For analysis purposes we are mostly interested in what

block (or port respectively) is connected with which other
blocks and which signals are transported. Hence, we intro-
duced the logical lines which abstract from the details of
how a line is connected with different blocks. Instead a line
has exactly one logical source port and at least one logical
target port but no branches as they do not introduce relevant
information about signal flow. Consequently, there are no
branching lines left which facilitates the process of analysing
connections and signal flow between blocks significantly.
Figure 4 illustrates the logical representation of the Simulink

line of Listing 1 (and MdlLine of the EMDL Raw Model of
Listing 2). Furthermore, even visually separated blocks like
from and goto blocks in the Simulink model are connected
by a logical line.

2.1.3 Logical signals
While information about the signal flow is contained im-

plicitly in the original Simulink model as described above
(and hence difficult to extract) we create logical signals, which
have a name and are related to all ports and lines transport-
ing the signal. For example, in order to identify the signal
flow of a given signal in the Simulink model we have to follow
the lines beginning at the source block. But a line may also
transport more than one single signal, i.e., it transports a
bus signal that contains all transported signals.
To this end, we also introduce logical signals that can either

be bus signals, which contain one or many further logical
signals or atomic signals that may be contained in a bus
signal but cannot transport other signals. Furthermore, each
atomic signal is linked to all bus signals, which transport it.
By this means, it becomes apparent for a given signal which
lines transport this signal (either included in a bus signal
or directly). For a given atomic signal we can now directly
lookup which line is associated (either to this atomic signal
or to a bus signal that contains this signal). Now we can
perform queries on the model to identify parts of a model
which are potentially influenced when a signal changes.

2.1.4 Signal transporters
In a Simulink model signals are transported between blocks.

In order to facilitate identifying signal flows throughout a
Simulink model both logical lines and logical ports are ab-
stracted as “signal transporters”. By having such an abstrac-
tion at hand the problem of finding out, which parts of a

model are influenced by a special signal, becomes solvable
with a reasonable effort since the information about signal
flow now becomes explicit. That means that we no longer
need to follow a given signal through a Simulink model.
Instead, we just have to query our transformed model for rel-
evant signal transporters for the signal under consideration.

2.2 Advanced transformations
By enriching the original Simulink model with abstract

logical information we created a useful base model, which
now allows us to answer questions about the ECU application
and the corresponding Simulink model with reasonable effort
(e.g., ”Identify all lines and blocks of the model which are
influenced by a change of signal ’a’.”). The second step of
the concept is then to extract some information out of the
EMDL Base Model and process it further. For that step we
use transformations that we call Advanced Transformations.
One of these is shown in Section 3. In future extensions these
advanced transformations may also consider further input as
exemplified in Section 6. The result of this step is called the
view model, which represents those aspects that are relevant
to a particular stakeholder or for a particular task.

2.3 Graphical transformation
To further support the engineer in his work, one objective

is to provide tools, which provide interactive access to the
task-relevant information. Hence, we aimed to produce a
graphical representation of the view model to make the result
of the analysis more comprehensible and intuitive. To this
end, we have developed a graphical editor using Eclipse GMF
(Graphical Modeling Framework).

The editor enables the user to recursively descend into sub-
systems by double-clicking them – similar to the behaviour
known from Simulink. The graphical representation uses
available positioning information as given by the Simulink
model to arrange the blocks on the canvas.
Each model to be visualised in the editor has to be struc-

tured such that the editor can display it. Therefore, our
transformed model has to be enhanced such that it provides
the necessary information. This is the task of the graphical
transformation. Especially lines and – if desired – branches
of lines are introduced within this transformation. Now the
created view can be visualised. The result of the graphical
transformation is called a GMF model. Section 3 applies
the described methodology to create such a graphical editor
view.

2.4 Transformation languages
For all transformations we applied two state-of-the-art

transformation languages, selecting one of them depending
on the adequacy for a given problem. While the ATLAS
Transformation Language (ATL) [8] succeeds in transforming
huge models very efficiently, the Epsilon Translation Lan-
guage (ETL) [9] seems to be more convenient to apply for a
developer used to programming with Java or C++.
This is why we mainly use ETL whenever concrete mod-

ifications on a model have to be performed (e.g., to create
special view in the advanced transformations) whereas we
apply ATL to add minor additional information on possibly
large models (e.g., to create logical signals and to distinguish
bus and atomic signals). With transformation languages
it is difficult to directly manipulate a given model in place
(similar to accessing and modify objects in an object-oriented

programming language). Hence, we created what we call
“identical transformations” both for ETL and for ATL. These
transformations create an output model that is identical to
the input model. That way, we can build new advanced trans-
formation just by modifying these identical transformations
as necessary.
It should be noted that the applied transformation lan-

guages (both ATL and ETL) provide some similar support
for copy-and-modify transformations, e.g., in ATL’s refine
mechanism or in ETL’s capability to generate a copy trans-
formation. However, we had mixed results with these and
are still exploring our options to find the best solution for
use in everyday practice.

3. ANALYSIS OF SIMULINK MODELS
The previous section explained the transformation concept.

Such transformation of a Simulink model into the Eclipse
world enables to use all techniques available from the Eclipse
Modeling Project, e.g., corresponding transformation lan-
guages. In this section we apply these concepts to support
the development of Simulink models. In particular, we are
aiming to support a development strategy, where a model is
built out functional, compatible units taken from a library.
We will refer to this approach as “module-based”.

A Simulink model is often used to generate code, for in-
stance with Target Link. As models are used by different
partners many standardisation techniques have to be adopted
(e.g., to comply with AUTOSAR [4]). For example abstrac-
tion techniques have to be adopted to follow special design
patterns. Parts of the whole system might be grouped into
subsystems, which in turn themselves may contain subsys-
tems. Furthermore, signals may be integrated into buses.
Consequently, the structure of a Simulink model often be-
comes very complex.
Especially, as we are dealing with families of products

(e.g., similar implementations for various types cars) the
implementation model contains the functionality for a whole
family of variants. These variants are used to adopt the
models for different vehicles where slightly different changes
are necessary. Therefore different patterns are used to enable
variant management of the functionality. In earlier work,
we presented some approaches to manage and configure
variants [12, 11]. One of these patterns is a subsystem called
Module, which encapsulates the functionality of one feature.
Figure 5 shows the pattern of a module. There are dif-

ferent activation states. The Disabled state is set when the
feature/module is never active in the variant (e.g., due to
an functional option that is not available in this particular
car type). When the module is Enabled it is either active or
inactive. Active means that the module is running while an
Inactive module is available but not running. The different
activation states are controlled by the subsystem .
With this structure the set of all modules can be divided

into different groups of running modules. Again we have to
deal with the complexity of the system, which is hard to
handle for the human engineer. The modules running at a
specific car state are not easy to grasp and understand by
a developer, neither on the requirement specification level
nor on the level of the Simulink model implementing these
requirements. To analyse the model the developer needs
to “see” which module is active at which state and which
dependencies exist between modules.
As an example for the above mentioned issue we assume

Activation Active Level 1

Active Level n

Inactive

Disabled

...

Input

M
e
rg
e

O
u
tp
u
t

A B

C

D

E

Figure 5: Structure of the module pattern

Module A

Driving Mode A, B

Module C

Driving Mode B

Module B

Driving Mode B, C

Figure 6: Example for a module structure which
might cause problems

the Simulink model given in Section 2 shown in Figure 6. The
Module A is activated in DrivingMode_a and DrivingMode_b
and providing signals to Module B. There is no problem
with Module C which is activated in DrivingMode_b does not
depend on signals from Module A. But Module C is activated
in DrivingMode_B and DrivingMode_C. So it expects to have
input from Module A in both modi. But Module A does not
provide any signals in DrivingMode_C. This might cause an
error.
One important task when developing the Simulink model

is the analysis of dependencies of modules within the models.
Hence, our work aims at providing a view which shows the de-
pendencies of modules and the states where the modules are
activated. The view should depict all modules on one pane
with arrows indicating the dependencies and the structure
which shows the activation.
To do so, we first import the Simulink model into EMF

as described in Section 2.1, then in a second step we have
to transform the EMDL Base Model to the desired “view
model”, showing the dependencies between modules. In the
next chapter we describe this advanced transformation.

3.1 Transformation of the Simulink Model
We have written two advanced model transformations (see

the structure shown in Figure 7), which identify the modules
at a first stage and transform the modules to a structure
according to the requirements described above.
The transformation identifying modules in the Simulink

model is written in the ATLAS Transformation Language

ETL Graphical

Transformation

EMDL Base Model

base_model.emdl

Graphical EMDL Model

gmf_model.emdl

EMDL Specific Model

marked_modules.emdl

ATL

identifyModules

active_view.emdl

EMDL View Model
C

ETL

createModel-

ActivationView

2

B

1
A

3

D

...

Basic Transformation Advanced Transformation Graphical Transformation

Figure 7: Overview of the model transformation to
create a flattened module structure

(ATL) [8]. Modules can be identified via a tag added to
the Simulink model. Each found module is transformed
into an instance of “Module” (a metaclass introduced in the
metamodel). By these means it is possible to identify the
modules in later processing steps.
The second transformation creates a new model consisting

only of modules and dependencies. To do this, we used trans-
formation rules written in Epsilon Transformation Language
(ETL) [9]. Listing 3 describes the essential rule for a root
system and the computation for new targets.
The rule CreateRootSystem converts a normal System (in-

put model) to a new special system (output model) where
only blocks of the type Module are available. The transforma-
tion of these new blocks can be found in lines 13-18, where a
loop transforms all instances of Module in line 15 and adds
them to the target model in line 17.
Within this rule we also adapt the lines such that they

should now indicate, that there is a connection between
modules. These connections are created by the operation
createNewLine which is called in line 19. Due to space con-
straints we do not depict this function. Its main contribution
is to create a new line with the source module m from the
loop and the targets which are computed by the operation
getLinkedModules.

1 [. . .]
2 rule CreateRootSystem
3 transform s : MdlIn ! System
4 to t : MdlOut ! System
5 extends NamedElement
6 {
7
8 var a l lModules :new Set (MdlIn ! Module) ;
9

10 for (m in MdlIn ! Module . a l l I n s t a n c e s ()) {
11 a l lModules . add (m) ;
12 }
13
14 // add only module b l o c k s
15 for (m in a l lModules)
16 {
17 var outModule : MdlOut ! Module = m. e q u i v a l e n t

(" CreateModule ") ;
18 t . b l o c k s . add (outModule) ;
19
20 // create the s t r u c t u r a l connection
21 t . l o g i c a l L i n e s . add (createNewLine (m, m.

getLinkedModules (a l lModules)) ;
22 }
23 }
24 [. . .]

Listing 3: Transformation rule for System given in
ETL

The operation mentioned above, which searches for linked
modules is an important operation, which is depicted in
Listing 4. This operation is realized as a recursive object-
oriented function. For a given block and a set of Subsystems
given as parameter it returns a subset of Subsystems which
are connected to the calling block. The result will be found
in the variable linkedModules.
As illustrated in line 3 the operation therefore iterates

through all outports of the block which the operation is
invoked for. If the output is linked to a logical line we
retrieve all targets of the line (line 5-7) and decide what to
do with them based on the block type of the target block of
the line.
If the target is contained in the set of our modules we have

found a connection and add it to our result (lines 8-10). If we
have found another subsystem we have to search for modules
within this subsystem. So we are calling this function again
recursively (line 12) and add all results we obtain from this
call. If we have reached the end of a subsystem we leave it
and continue searching in the containing system (line 14). For
all other types of blocks we call the function again recursively
(line 16).

1 operation MdlIn ! Block getLinkedModules (modules :
Set (MdlIn ! SubSystem)) : Set (MdlIn ! SubSystem)
{

2 var l inkedModules : new Set (MdlIn ! SubSystem) ;
3
4 for (outPort in s e l f . outPorts) {
5
6 // i s there a Logica l Line
7 i f (outPort . l i n k i n g L i n e . i s D e f i n e d ()) {
8
9 // Search in a l l Targets

10 for (t a r g e t in outPort . l i n k i n g L i n e . t a r g e t) {
11
12 i f (modules . i n c l u d e s (t a r g e t . parent)) {
13 l inkedModules . add (t a r g e t . parent) ;
14 }
15 else i f (t a r g e t . parent . isTypeOf (MdlIn !

SubSystem)) {
16 l inkedModules . addAll (t a r g e t . accord ingBlock .

getLinkedModules (modules)) ;
17 }
18 else i f (t a r g e t . parent . isTypeOf (MdlIn !

BlockOutPort)) {
19 l inkedModules . addAll (t a r g e t .

accord ingPort . parent .
getLinkedModules (modules)) ;

20 }
21 else {
22 l inkedModules . addAll (t a r g e t . parent .

getLinkedModules (modules)) ;
23 }
24 }
25 }
26 }
27 return l inkedModules ;
28 }

Listing 4: Operation which determines the targets
for a given module

Figure 8: Graphical editor for the transformed
Simulink Model

With the algorithm in Listing 4 we are able to scan the
whole model structure no matter if there are subsystems,
bus structures, goto or from blocks. Hence we are able to
find the modules that are connected with a special module
very easily due to the fact, that we did a lot of structural
work before.
The resulting model now contains the structure we are

searching for. All modules have been lifted to the same layer
and connected if there is a connection in the source model.

3.2 Graphical Editor
In Figure 8 we show how the transformed model appears

in the editor.
We used the example from Figure 2 in Section 2. After

the transformations the modules A, B and C are on one
layer and if modules are interconnected this it depicted by
lines, e. g., like between module A and module B. Within
the modules the developer can see the structural content.
Therefore he is able to decide in which levels the module is
activated.

4. EXPERIENCES AND EVALUATION OF
VIEWS

We applied the presented transformation concept on real
examples from automotive industry. These examples are
Simulink models which have up to ten different Driving
Modes similar to the presented example in Section 3. With
this concept module dependencies and their activation can
now automatically be extracted out of the Simulink model.
The application developer no longer has to do the exhausting
job of looking for this information in the Simulink model.
The views allow to save time and to avoid losing track

during search in the model. Additionally the graphical repre-
sentation facilitates the analysis of the information. Adding
a new module in the Simulink model or changing an existing
one is now better supported.
During early testing we noticed that the presented trans-

formations work correctly and efficiently when applied on less
complex Simulink models. However, there seem to be enor-
mous differences between the used transformation languages
ETL and ATL. For instance, by (manual) translation of an

ETL transformation into an equivalent ATL transformation
we could increase the performance of the transformation
by factor 60 related to one and the same Simulink model.
It is too early to give detailed report on the reasons for
this discrepancy, but it surely seems to be worth further
investigations.
Furthermore, we discovered that independent of the trans-

formation language very complex models caused heap space
errors on a normal PC (AMD Dualcore with 3 GB RAM).
This currently stops us from performing the presented trans-
formation with reasonable effort for very complex models.
We plan to tackle this challenge by (1) translating current
ETL transformations into equivalent ATL transformations
and (2) shrinking the Eclipse representation of the Simulink
models.
The latter means for example to drop out information

about the Simulink model which is not necessary for a devel-
oper to visualise in a view, e.g., options associated to blocks,
technical lines (cf. Section 2.1) and graphical positioning
information. However, this means that a transformation of
the Eclipse representation back into a Simulink model will
no longer be possible. But as we primarily aim at generating
views this will be acceptable for the current usage scenario.

5. RELATED WORK
Similar to our approach of analysing Simulink models there

is the MOFLON framework [3], which provides tools to access
Simulink models and other process artefacts. The authors
present a method of keeping requirements and Simulink
models consistent with the help of model transformations
given in the MOFLON framework.
Alhawash et al. [2] provide another framework to develop

and analyse automotive software systems. The framework
supports the development in an early design phase with
different views based on a common model provided by this
framework. The concrete specification and implementation
is done with Matlab/Simulink.
Agrawal et al. [1] focus on model transformation of Mat-

lab Simulink and Stateflow models in a verification context.
Therefore they adopted the Graph Rewriting and Transfor-
mation language (GReAT) to build hybrid automata from
given models specified in Hybrid Systems Interchange Format
(HSIF). In contrast of our work the transformation focussed
on the semantics of the Simulink model.
A further important focus on model transformation is pre-

sented by Biehl et al. [5]. They use the above mentioned
ATLAS Transformation Language (ATL) to automate trans-
lations from the automotive architecture description language
EAST-ADL2 to a safety analysis tool called HiP-HOPS in
the context of model-based development of safety-related
embedded systems.
This paper primarily aims to support the developer to

manage variability and changes of products or product lines
respectively based on the analysis of Simulink models via
Eclipse frameworks. Another approach presented in earlier
work [12] is managing variability via improving the Rapid
Control Prototyping engineering process with the help of
formal feature models.
[7] attempts to integrate product configuration and vari-

ability resolving into domain specific languages with special
focus on dependencies between elements and features. To
this end, the authors adopt higher-order transformation lan-
guages like the ATLAS transformation language (ATL).

[6] deals with possibilities to translate domain specific
languages into configurable models with formal semantics.
The presented framework enables a tool-supported configu-
ration process by visualising mapping between features and
implementation including explanations about constraining
dependencies (e.g., excludes and requires) in a given feature
selection. Furthermore they show how negative variability
combined with subsequent pruning can be used to derive
a product-specific model for a given configuration. Finally
they evaluate the presented approach on a parking assistant.
[11] elaborates on challenges which result from combining

embedded software products to a product line in model-based
engineering and how the upcoming problems can be tackled.
These challenges range from complexity handling to tool
integration. Therefore they create a Simulink model from a
feature model and transform this model into a domain model
in the Eclipse world using the Xtext framework. A product
can then be derived by selecting the desired features in the
feature model and mapping this selection to the previously
created domain model.

6. CONCLUSIONS
In this paper we presented an approach to analyse the

structure of a Simulink model to facilitate the engineering
process, in particular with respect to change and variability
management. We exemplified the methodology by a model-
based developed ECU application inspired by real projects in
automotive industry. Hence, our work is based on Simulink
models where we identified so-called modules (i.e., subsys-
tems that represent a special feature) and restructured them
to enable dependency analyses.
To this end, we created a view using model transformations

to determine the interesting blocks and interrelations between
them. The visualisation is implemented by a model-based
developed editor. Finally, we evaluated our approach on a
real industry example.
Generating this particular view was only a first step in

evaluating EMF to support the further development of ECU
applications. We plan to implement and evaluate diverse
further views with respect to their impact on industry de-
velopment. Moreover, we intend to develop a method or a
language suited to define arbitrary special view.
Additionally, we expect benefits and possibilities from inte-

grating further input into such transformations. Integrating
artefacts of different engineering phases, e.g., requirements
and test cases will enable analyses that support a traceable
engineering process of ECU applications. Even formal fea-
ture models could be used as further input. For instance, an
analysis tools could identify and visualise which parts of the
Simulink model will be affected by feature selection.

7. REFERENCES
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic

translation of simulink/stateflow models to hybrid
automata using graph transformations. Electronic
Notes in Theoretical Computer Science, 109:43–56,
2004. Proceedings of the Workshop on Graph
Transformation and Visual Modelling Techniques
(GT-VMT 2004).

[2] K. Alhawash, T. Ceylan, T. Eckardt, M. Fazal-Baqaie,
J. Greenyer, C. Heinzemann, S. Henkler, R. Ristov,
D. Travkin, and C. Yalcin. The fujaba automotive tool

suite. In Proc. of the 6th International Fujaba Days
2008, Dresden, Germany, 2008.

[3] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr.
MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations. In A. Rensink
and J. Warmer, editors, Model Driven Architecture -
Foundations and Applications: Second European
Conference, volume 4066 of Lecture Notes in Computer
Science (LNCS), pages 361–375, Heidelberg, 2006.
Springer Verlag, Springer Verlag.

[4] AUTOSAR. Autosar - automotive open system
architecture. http://www.autosar.org.

[5] M. Biehl, C. DeJiu, and M. Törngren. Integrating
safety analysis into the model-based development
toolchain of automotive embedded systems. In LCTES
’10: Proceedings of the ACM SIGPLAN/SIGBED 2010
conference on Languages, compilers, and tools for
embedded systems, pages 125–132, New York, NY, USA,
2010. ACM.

[6] G. Botterweck, A. Polzer, and S. Kowalewski.
Interactive configuration of embedded systems product
lines. In Proceedings of the 1st International Workshop
on Model-driven Approaches in Software Product Line
Engineering(MAPLE 2009), collocated with the 13th
International Software Product Line Conference (SPLC
2009), volume 557, pages 29 – 35, San Francisco,
California, USA, August 2009. CEUR Workshop
Proceedings. ISSN 1613-0073.

[7] G. Botterweck, A. Polzer, and S. Kowalewski. Using
higher-order transformations to derive variability
mechanism for embedded systems. In 2nd International
Workshop on Model Based Architecting and
Construction of Embedded Systems (ACESMB 2009),
Workshop at the 12th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS 2009), Denver, Colorado, USA, September
2009.

[8] Eclipse-Foundation. Atl (ATLAS Transformation
Language). http://www.eclipse.org/m2m/atl/.

[9] Eclipse-Foundation. Epsilon.
http://www.eclipse.org/gmt/epsilon/.

[10] Eclipse-Foundation. Xtext - a programming language
framework. http://www.eclipse.org/Xtext/.

[11] A. Polzer, G. Botterweck, I. Wangerin, and
S. Kowalewski. Variabilität im modellbasierten
Engineering von eingebetteten Systemen. In 7.
Workshop Automotive Software Engineering, volume
P-154 of Lecture Notes in Informatics (LNI), pages
2702 – 2719. Gesellschaft für Informatik (GI), 2009.

[12] A. Polzer, S. Kowalewski, and G. Botterweck. Applying
software product line techniques in model-based
embedded systems engineering. In Model-based
Methodologies for Pervasive and Embedded Software
(MOMPES 2009), Workshop at the 31st International
Conference on Software Engineering (ICSE 2009),
pages 2–10. IEEE Computer Societ, May 2009.

http://www.autosar.org
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/Xtext/

