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ABSTRACT
Verification of software for embedded systems is crucial for

ensuring a product’s integrity. Formal approaches like static anal-
ysis and model checking are gaining momentum in this context.
To make an exhaustive examination of the system’s state space
tractable in practice, these methods perform an abstraction and
over-approximation of the possible behavior. As a side-effect,
however, this leads to “false negatives” – property violations that
exist only in the model and not on the real system. Ruling out such
spurious property violations by manual valuation is a tedious
and error-prone process. This paper reports on the concepts and
design of a hardware unit to support the identification of false
negatives. Our approach has several advantages: (i) It works
on microcontroller binary code, thus avoiding the need for avail-
ability of high-level source code, and covering compiler bugs as
well. (ii) Moving the verification directly to the target platform
rules out modeling errors. (iii) The cases suspected to lead to
spurious property violations can serve as very efficient test cases
for a specific implementation later on. We illustrate principle and
benefits of the proposed approach by a worked example.

1 INTRODUCTION
Today, computer-based systems are entrusted safety-critical

functions in many application domains, including, but not limited
to, automotive, avionics or aeronautics. In such applications, the

failure of the computer system may have (by definition) catas-
trophic consequences in terms of loss of human lives, severe
environmental damage, and/or huge cost. Therefore, it is – among
other provisions – mandatory to thoroughly test these systems in
order to unveil residual design and implementation/fabrication
bugs before they are put into operation. While the structural, scan-
based test employed for hardware scales reasonably well with
complexity, the traditional methods for testing embedded software
like code reviews and static tests (e.g., checks for memory leaks,
coding rules, runtime analysis) alone are not adequate for the
complexity of contemporary applications. It is thus desirable to
derive test data automatically.

1.1 Primer on Formal Verification
In recent years, technical contributions have advanced formal

methods to the point they can be applied to automatically verify
(industrial-sized) software against a user-supplied specification.
In contrast to the traditional, test case driven approaches with
limited coverage, formal verification techniques — in principle
— exhaustively check all paths through the program against its
requirements (or specification). Most notable formal methods
are (i) deductive methods such as theorem proving, (ii) symbolic
or explicit exploration of state spaces by model checking [1],
and (iii) analyzing abstract executions of programs by means of
abstract interpretation [2]. With a practical application in mind,
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all of them carry their own strengths and weaknesses.
Deductive methods are very elegant, but often considered

expensive, since they rely on experts in the field who guide the
verification process by providing additional hints to a theorem
prover or integrating manually derived proofs [3]. Model checking
involves an exhaustive exploration of all states and transitions of
(a model of) the system-under-test. If the model checker unveils a
bug, it does so by providing a counterexample which exhibits a
path to the failure. Counterexamples are thus extremely valuable
for debugging [4]. A notorious difficulty with model checking is
that state explosion occurs often already in moderately complex
applications. Because of this complexity, there has been much
interest in representing states of a program symbolically, which
enables states that share some commonality to be represented
without duplicating their commonality.

By way of comparison, the key idea in abstract interpretation
is to abstract from the detailed nature of states. A program ana-
lyzer then operates over collections of states, which are equivalent
in some sense, rather than individual states. If the number of
collections of states — called abstract states — is small, then
all paths through the program can be checked without incurring
the problem of state explosion. This approach can be seen as an
automatic simplification of the system model in order to enable
verification. However, when too many details are lost when work-
ing with abstract states the approach cannot prove the correctness
of a system; the technique leads to false negative warnings. Fur-
thermore, deriving counterexamples from abstract interpretation
is difficult [5]. The cumbersome task of inspecting and eliminat-
ing spurious error reports resulting from abstract interpretation
thus remains with the user.

Pure testing, on the other hand, does not guarantee complete
coverage of the reachable state space of the program, but does not
produce spurious property violations. Typical coverage criteria
have, however, limited value [6] for deriving test cases to unveil
bugs. It is thus a challenging task to derive test cases which either
exhibit a bug or show its absence.

1.2 Verification-driven test-case generation
On the contrary, we present a method which combines test-

ing with abstract interpretation so as to overcome the problems
inherent to either method. The key idea of our approach called
CEVTES is to use abstract interpretation in order to detect po-
tential violations of the specification. Backward analysis is then
applied to derive a set of potential traces, which could describe
a path to the defect in the concrete program. Since this set is
derived from an abstraction of the program, it might contain spuri-
ous traces, which cannot occur in the concrete program. We thus
execute the test trace on the target hardware in order to filter spu-
rious traces. To do so, we have developed a dedicated hardware
unit, which allows to check relevant properties on the fly, while
the program executes on a microcontroller IP core. Overall, this

approach confers the following advantages:

1. Checking user-defined invariants directly in the system exe-
cution yields an end-to-end verification that covers compiler
bugs [7], modeling faults (including processor specification
faults) and similar issues that are not addressed by other
formal, model-based approaches.

2. While the original intention of the checking unit is to support
the software verification process, it can conveniently be used
for on-line error detection during operation as well. Such a
plausibility checking, addressing both, control flow as well
as data ranges, is a very effective support for fault tolerance.

1.3 Structure
The paper is structured as follows: Section 2 briefly surveys

related work, followed by Section 3 which details certain aspects
of our test-case generation approach. Then, we formalize our
specification language in Section 4. Subsequently, in Section 5
the property monitoring unit is presented, for which Section 6
presents some implementation results. Finally, Section 7 con-
cludes the paper.

2 RELATED WORK
Runtime verification [8,9] is an akin research area, combining

formal verification and program execution. Runtime verification
monitors certain requirements (such as, e.g., an LTL formula
with adaptation to finite traces) during the normal operation of
the system. While classic runtime verification can only increase
the confidence in the program under scrutiny by checking that
the current execution is consistent with the expected behavior,
our approach actively drives test case generation towards finding
real-life bugs. Nevertheless, our work allows property monitoring
in a stand-alone fashion even without the presence of a test-case
generation framework.

Classical hardware monitors that simply probe one or more
internal signals have been known in literature for a few decades,
such as the non-interference monitoring and replay mechanism
described by Tsai et al. [10]. While their intention is to replay
an execution from an execution history our hardware property
unit sharpens abstract interpretation. Drechsler [11] describes an
approach to synthesize checkers for online verification of SoC
designs, but does not allow for checking arithmetic relations
among bit-vectors.

Mercer and Jones [12] combine a cycle accurate debugger
with model checking algorithms to derive a model of execution
at machine-code level. Their work is based on the GNU debug-
ger (gdb) with support for different processor backends. Their
approach is only feasible for a small sized code base and suffers
from state explosion.
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3 THE CEVTES APPROACH
CEVTES1 is an embedded systems testing framework [13].

It uses abstract interpretation of microcontroller binary code to
generate assertion-directed test cases. The specification and the
resulting test cases are transfered to a hardware monitor unit that
decides validity of warnings. CEVTES currently supports the
Intel MCS-51 architecture and is easily adaptable to other target
architectures.

Our framework as outlined in Fig. 1 takes an executable
binary file and a specification as inputs. The binary file is the
unmodified object code generated by the compiler from an arbi-
trary high-level programming language. The specification may
contain local assertions and global invariants, as described in
Sect. 4. After input parsing, we generate an initial control flow
graph (CFG) of the binary code and apply abstract interpretation
to derive program invariants. These invariants are used by the
test-case generator to identify possible specification violations.
Next, a backward analysis derives actual program inputs that lead
the execution to the possible specification violation. The test
traces are then transferred to and executed on real hardware, i.e.,
an IP-core instance of the target microcontroller running within
an FPGA embedded in its operating environment. A property
monitoring unit (PMU) attached to the IP core tracks specification
items during test-case execution and provides runtime feedback,
as will be shown in Sect. 5.

3.1 Preliminaries
In the following, we describe notations used in the remainder

of the paper.

State of a microcontroller program: Let a state of a program
be a tuple 〈pc,m〉 ∈ Locs×Mem, where Locs is a finite set of
program locations, and Mem represents the set of all possible
memory configurations of the microcontroller. Then, the state
space of the program is a subset of Locs×Mem. A memory
location may either be a register r or a special function register sfr.
For the Intel MCS-51 architecture, in order to address a specific
register in the internal RAM area, we write rx : {x ∈N0 : 0≤ x <
|Mem|}. For example, r10 denotes the memory location at address
10. Special function registers are referred to by an unambiguous
string representation, such as ACC for the accumulator.

Local assertion: A local assertion A (pc,ϕ) is a property ϕ

attached to a certain program location pc ∈ Locs.

Global invariant: A global invariant I (ϕ) is a property ϕ

intended to hold for all program locations Locs in every execution.

1http://ti.tuwien.ac.at/ecs/research/projects/cevtes

3.2 Test-case generation
We use abstract interpretation to generate property-directed

test cases. The remainder of this section gives a brief introduction,
the interested reader is referred to [13, 14] for further details.

Abstract interpretation: Abstract interpretation automatically
infers dynamic properties of programs, see [2]. The key idea is
to simulate the execution of each concrete operation g : C→C
(in our case a single microcontroller instruction) using an ab-
stract analogue f : D→ D, where C and D denote the domains
of concrete values and descriptions. Each abstract operation f is
designated to model its concrete counterpart g in the following
sense: If d ∈D describes a concrete value c ∈C, then the result of
applying g to c is described by applying f to d. Representatives
of abstract domains D are the non-relational interval domain [15]
and the relational variants thereof.

Analysis: To derive a set of test cases, our abstract interpre-
tation framework derives invariants using interval analysis and
synthesized transformers for basic blocks. In detail, we synthesize
optimal transfer functions from propositional encodings of the mi-
crocontroller instructions’ semantics using SAT solving. In case
the invariants exhibit a potential property violation, a backward
analysis derives a path (the test case) from the property violation
to the start of the program. This is done by the test-case generator.

3.3 Test-case format
The test-case generator (cf. Fig. 1) derives a test suite Γ.

Γ is a finite set of n test cases t, each of which is a quintuple
t = 〈P,π,Θ,E,O〉 with:

P : Binary program code. The *.hex file, which is equivalent
to the user-supplied binary file, is loaded into the microcon-
troller’s PROM. Note that we neither alter the source code
nor do we insert additional event-triggers into the program,
which is common practice in runtime verification.

π : Control flow information. A finite path representing the actual
test trace by a sequence 〈pc0, . . . , pcn〉 of program counter
locations. The sequence is the predicted execution history
(temporally ordered pc locations) of t.

Θ : Specification items. A list of global invariants I (ϕ) that
need to be tracked by the monitor unit. Local assertions,
though also considered part of the test case, are not listed
here, as they need not be transferred to the hardware.

E : Environment information. A list of external inputs In :=
〈pc, i〉, given by an input i and corresponding program loca-
tions pc where the input should be applied to the microcon-
troller. Since embedded applications heavily interact with
the environment E is vital to drive execution towards the
property violation.

O : Execution options. Additional settings to be applied to the
IP-core instance, such as the system clock speed.
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FIGURE 1. The CEVTES framework.

4 PROPERTIES OF INTEREST
Our framework supports local assertions and global invari-

ants. The simplicity of the specification language is based on a
conclusion we drew when conducting an industrial case study:
temporal logics are often difficult to handle for test engineers [16].
In contrast, assertions and invariants are natural to test engineers,
as they are used in everyday software development [17, p. 10].

4.1 Specification language
To express program properties of interest CEVTES supports

a specification language with the following grammar:

ψ ::= (A (pc,ϕ) | I (ϕ))∗

ϕ : logic | ¬logic
logic : rel | (rel � rel)∗

rel : arith | (arith ? arith)∗

arith : mul | (mul • mul)∗

mul : unary | (unary ◦ unary)∗

unary : (+ | −)∗ term
term : (rx | s f r | constant)

The intended interpretations for the operators ?,•,◦ are the
same as in everyday arithmetic over the domain of the integers Z.
Together with ¬ the � operator represents the standard Boolean
connections. The Kleene star ∗ is interpreted as in regular ex-
pressions and has the meaning zero or more times. In short, the
supported operators are:

� ∈ {∧ , ∨}
? ∈ {< , ≤ , > , ≥ , ! = , ==}
• ∈ {+ , −}
◦ ∈ {× , ÷ , %}

The property ϕ is an expression over memory locations m ∈
Mem. The satisfaction relation associated with ϕ is intuitively
clear, following the standard inductive definition. If m ∈Mem

satisfies ϕ , we write m |= ϕ . Properties, in turn, can be of local or
global nature. A local assertion is a property A (pc,ϕ) attached
to a certain program location pc ∈ Locs. Given a set of states
S ⊆ Locs×Mem, then A (pc,ϕ) holds w.r.t. S iff m |= ϕ for all
〈pc′,m〉 ∈ S with pc = pc′. Similarly, a global invariant I (ϕ)
holds iff m |= ϕ regardless of pc′.

4.2 Restrictions on global invariants
While local assertions can be of arbitrary complexity, we

restrict global invariants to be a system of logahedral constraints,
which are a restricted form of two-variable-per-inequality con-
straints. A logahedron describes a set of points satisfying a con-
junction of logahedral constraints. The logahedra abstract domain
is described by Howe and King in [18] and is a feasible compro-
mise between analysis precision and computational complexity.
Constraints for the PMU are in the form of:

±2n · ri±2m · r j ≤C,

where ri,r j are registers ∈ Locs, C a constant in Z, and n,m
are exponents in Z. The restriction to logahedral constraints is
caused mainly by hardware implementation considerations as
multiplication and division demand resource hungry hardware
designs in general, whereas checking of ±2n · ri± 2m · r j ≤ C
can be implemented with binary adders and little combinatorial
logic. Let Add(<a>,<b>,c) be a ripple carry adder operating
on the unsigned vectors <a>U and <b>U and let c be a single
bit representing the carry-in. Then, a subtracter representing a−b
is equivalent to Add(<a>,< b >,1). Similar combinations for
relational operators can be found in [19, Chap. 6]. Division and
multiplication by 2n are translated to logical right and left shifts.

4.3 Frontend
As an alternative to reading a user-defined specification, our

framework can also extract existing assertions from the high-
level representation of the program. This is achieved by pars-
ing compiler-generated debug information which is then further

4 Copyright © 2011 by ASME



exploited to reconstruct the correspondence between memory
locations and global program variables.

Listing 1 shows examples for A (pc,ϕ) (lines 1-7) and I (ϕ)
(lines 9-14) properties. The local assertion Assert1 requires that
the claims #1 - #3 hold whenever the program traverses program
counter location 0x60. Claim #1, e.g., expresses that the sum of
registers r7, r6, r5 and ACC shall be less or equal to the value in
register r90. The global invariant Inv1 requires that claims #1 and
#2 hold on all executions of the program under scrutiny.

1 begin property A s s e r t 1 :
2 @PC 0x60 :
3 # 1 : r7 + r6 + r5 + ACC <= r90 ;
4 # 2 : r5 + r6 <= 4 ;
5 # 3 : ( r21 == 0x80 ) && ( P0 >= 0x90 ) ;
6 end@ ;
7 end property ;
8

9 begin i n v a r i a n t Inv1 :
10 @every PC :
11 # 1 : r7 − r6 <= 0x70 ;
12 # 2 : −2* r5 + 4* r6 != 0x55 ;
13 end@ ;
14 end i n v a r i a n t ;

Listing 1. Example properties.

5 THE PROPERTY MONITOR UNIT
Our analysis framework derives a test suite Γ with a finite

number n of test cases T . T consists of the two disjoint sets TX
and T× (TX ∩T× = /0), where TX are feasible test cases and T×
are infeasible test cases, i.e., spurious warnings.

The Property Monitor Unit (PMU) executes all the test cases
in T and detects spurious test cases T×, thereby, successively re-
moving infeasible test cases and reducing T to test cases residing
in TX. This relieves the system designer from performing manual
valuations of all these cases, which is a tedious and error-prone
task.

The PMU either reports infeasible (when the test case left
the intended control flow given by π), violation (when a global
invariant failed to be proved correct), or spurious (when the prop-
erty violation found by the host analysis framework could not be
affirmed by the PMU) to the host application.

Our design of the respective hardware unit was targeted to a
flexible, lightweight, generic and non-intrusive solution. This led
us to the following design decisions:

Flexibility/Simplicity: To facilitate both, accurate and complex
as well as fast and simple checks, we opted for a hybrid ap-
proach: Elementary arithmetic operations and comparison
operations are performed in hardware next to the system-
under-test, while more elaborate calculations are performed
in software offline, based on logs of all register/RAM inter-
actions that are collected by a monitoring unit and sent to
the host. To that end, the interface must provide sufficient

bandwidth so that the transfers and checks can be handled
within reasonable time.

Non-intrusiveness: In contrast to other approaches our PMU
does not require the modification of the target hardware or
software. We consider this an important advantage. Our
hardware operates as an extension to the target hardware that
only requires access to the data and instruction memory buses.
Furthermore, provisions must be made to load the software
into the targets’ PROM as well as to control the executions
on the target CPU (Stop/Step/Go).

Generality: So far, our approach assumes (1) a strictly sequential
execution of the program code, which is a very usual property
for the targeted embedded controllers, and (2) access to the
register file via the memory bus, for which purpose a debug
interface can alternatively be used as well.

5.1 Overview
The PMU is shown in Fig. 2. A bidirectional FIFO-buffered

communication with the host is managed by the USB link block,
interfacing an USB 2.0 controller. Property checking is controlled
by the PMU controller that coordinates the different monitoring
functions. The whole design runs within an FPGA and is attached
to an out-of-the-box microcontroller IP-core. Note that, we did
not modify any of the behavioral code of the microcontroller. The
PMU is attached to the RAM interface, the PROM interface, and
the I/O interface of the IP core. The RAM interface comprehends
the data and the address bus of the microcontroller. Property
checking consists of an initialization and an execution phase and
works as follows.

Initialization Phase:

1. The host application transfers a test case t to the PMU.
2. The PMU controller writes the binary code of the program

under scrutiny into the PROM and writes the buffer of the
path monitor with a list of expected program counter loca-
tions, that the test case is expected to traverse. Re-buffering
is managed by the PMU controller. Similar, dedicated ex-
ternal inputs (e.g., port inputs or received serial bytes) and
specification items are transfered to the environment control
block and the invariant checker, respectively.

3. The PMU controller sets up the online property checker with
the set of global invariants to be checked.

4. The initialization phase is completed when the PMU con-
troller enables the system clock for the IP core.

Execution Phase:

• The RAM event logger is triggered by the RAM write en-
able signal asserted by the microcontroller. Whenever the
microcontroller writes to the RAM, i.e., writes a memory
location, the RAM event logger collects the actual program
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FIGURE 2. The CEVTES property monitor unit.

counter pc, the newly written value ∆ and the destination
memory location @ and forwards this information by means
of a RAM update δ to the PMU controller, which takes care
of the transmission to the host.
• Parallel to RAM event logging, the invariant checker checks

at every progress of the program a set of global invariants.
Property violations are reported back to the PMU controller.
• The path monitor takes a path of pc locations π as input

and compares them with the actual execution of the test case
by sensing the PROM interface. For various reasons, it is
vital to ensure that the actual test case traverses exactly the
same path as predicted by the test-case generator. First, due
to the imprecision of abstract interpretation infeasible test
traces may be generated. Second, in the presence of indirect
jumps the path monitor helps to dynamically detect new jump
targets on-the-fly, thereby, assisting CFG reconstruction as
newly detected jump targets can be simply added as a new
edge to the CFG, hence, subsequently refining the CFG.

5.2 Property Monitoring
The main intention of the PMU is to enable a finite set of

global invariants to be monitored in a non-intrusive fashion (online
monitoring). To allow more complex properties to be checked,
the RAM event logger enables property checking on the host
computer (offline monitoring).

Online Monitoring: Global invariants are monitored on-the-
fly, thus, concurrent to the execution of a test case at the target
microcontroller. The superior advantage of this approach is that
the microcontroller may run at its full system clock speed and
does not need to be sent to a “halt” state when a property is
checked. This is very useful for frequent but simple checks.

Offline Monitoring: More elaborate properties and local as-
sertions are checked at the host computer. The PMU collects
successive RAM updates δ and offers them to the host. δ is a

triple 〈∆,@, pc〉, where ∆ is the data update, @ the address of
the memory location, and pc a program counter location. Given
a strict sequential execution of program code, RAM updates are
in a temporal order. For example, δ := 〈0x8,0x15,0xC1C1〉 is
read as: memory location 0x15 becomes 0x8 at program location
0xC1C1.

The host application starts with an initial program state
S0〈pc,m〉 and successively applies the update ψ(δ ) to derive
the next state S′〈pc′,m′〉. For sake of simplicity we rewrite
δ 〈∆,@, pc〉 to 〈δ∆,δ@,δpc〉 and S〈pc,m〉 to 〈Spc,Sm〉. Sm[i] refers
to the memory location m with address i (ranges over all bytes in
the RAM of the target microcontroller, i.e., 0≤ i < |Locs|). Then,

an update S
ψ(δ )−−−→ S′ is defined as follows:

S
ψ(δ )−−−→ S′ =


S′pc := δpc

S′m[i] :=

{
δ∆ if i≡ δ@,
Sm[i] otherwise.

5.3 Runtime Feedback
CFG reconstruction: A prerequisite for sound abstract inter-
pretation requires that a CFG is present. However, under the
presence of indirect control this is a notorious hard problem [20].
Consequently, our abstract interpretation framework starts with an
initial, incomplete CFG that is incrementally refined as test-case
execution advances. Whenever a new jump target is detected, we
add a new edge in the CFG, thus, subsequently refining the CFG.
As mentioned before, the path monitor compares the list π of
expected program counter locations – which are equivalent to ver-
tices in the CFG – to the program counter locations traversed by
the test case. Whenever the path monitor encounters a deviation
and the last executed instruction was an indirect jump (iJMP), an
edge from vertex vn−1 to vertex vn is inserted, where vn−1 is the
location of iJMP and vn is the newly detected jump target.
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Verdicts: Whenever one of the global invariant checkers I (ϕ)
witnesses a property violation, test-case execution and IP-core are
first kept in a halt state. To facilitate further analysis, the violation
is reported back to the host together with the current pc location
and the valuation of the registers involved in property ϕ before
the next test case t in Γ is executed.

6 WORKED EXAMPLE
In this section we show how the introduced PMU supports

testing and monitoring of specification items in industrial embed-
ded code. The embedded software of a cooling controller for a
power converter serves as a running example.

6.1 System Overview
The target embedded system is a cooling controller that mon-

itors current and voltage parameters of a DC/DC flyback con-
verter [21] in an industrial setting and adapts the system’s cooling
according to the power dissipation. A system overview is given
in Fig. 3.

Ag AgCooling controller
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FIGURE 3. The Cooling Controller Application.

6.2 The Flyback Converter Specification
The design of the flyback converter puts restrictions on in-

put voltage, input current, and power dissipation. For example,
the switch at the primary side of the converter owns a certain
nominal switching-voltage and the coil has a nominal operating
current. These requirements can be summarized as a system of
inequalities:

Req1: 0A ≤ I ≤ 5A
Req2: 0V ≤ V ≤ 5V
Req3: 0W ≤ V × I ≤ 16W

Note that Req3 is equivalent to 0W ≤ P≤ 16W , and expresses the
valid power dissipation range. In geometry, this inequalities are

described by four closed half-planes, relating to the minima and
maxima values for current and voltage, and a rational function
( f (x) = Pmax

x ) describing the power dissipation limitation. The
flyback converter operates within the specification as long as the
current and the voltage remain within the hatched area of Fig. 4.

Volts

Amps

V ≤ 5V

V ≤ 5V

V ≥ 0V

V ≥ 0V

I ≤ 5AI ≤ 5A

I ≥ 0AI ≥ 0A

P≤ 16W

P≤ 16W

FIGURE 4. FlyBack Converter Specification (exact).

6.3 Target Application
The target application’s purpose is to adjust the fan speed

of the DC/DC converter according to the measured power con-
sumption. With every iteration of the main loop, the software
reads values from two ADCs, i.e., the I/V probes in Fig. 3, one
corresponding to the voltage measured at the input of the fly-
back converter, the other measures a voltage drop across a shunt
resistance to measure the input current. There are different scaled-
down versions of the product, thus, shunt resistors of different
resistance are shipped. This necessitates that the software receives
the actual shunt resistance value during startup from a supervising
industrial control system.

Source Code: Lets consider the code snippet in Lst. 2. The
main method calls sysConfigure(), where the target application
requests the shunt resistance value from the overlaying control
system. processTask() summarizes the tasks assigned to the target
application. For brevity, the code is not presented in length here
as it does not contribute in demonstrating our approach. Within
the while loop the function adjustCooling() is called, that reads
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two ADC samples (lines 10 and 11), one for voltage and one for
the voltage drop across a shunt resistor. Next, the actual current is
calculated with application of Ohm’s law (line 12). Finally, based
on the calculated power dissipation, the cooling system is set to
one of the states in {off, moderate, full}.
1 UINT8 s y s V o l t a g e ;
2 UINT8 s y s C u r r e n t ;
3 UINT8 s y s P o w e r D i s s i p a t i o n ;
4 UINT8 s h u n t R e s i s t a n c e ;
5

6 UINT8 a d j u s t C o o l i n g ( UINT8 s h u n t R e s i s t a n c e ){
7 UINT8 s h u n t V o l t a g e ;
8 UINT8 r e t u r n V a l = C SUCCESS ;
9

10 s y s V o l t a g e = readADCPort (PORT V ADC ) ;
11 s h u n t V o l t a g e = readADCPort ( PORT I ADC ) ;
12 s y s C u r r e n t = s h u n t V o l t a g e / s h u n t R e s i s t a n c e ;
13 s y s P o w e r D i s s i p a t i o n = s y s C u r r e n t * s y s V o l t a g e ;
14

15 i f ( s y s P o w e r D i s s i p a t i o n <= POWER LOW){
16 r e t u r n V a l = se tCool ingMode (OFF ) ;
17 }
18 e l s e i f ( s y s P o w e r D i s s i p a t i o n <= POWER MID){
19 r e t u r n V a l = se tCool ingMode (MODERATE) ;
20 }
21 e l s e
22 r e t u r n V a l = se tCool ingMode (FULL ) ;
23 }
24

25 re turn r e t u r n V a l ;
26 }
27

28 void main ( void ){
29 s y s C o n f i g u r e (& s h u n t R e s i s t a n c e ) ;
30 whi le ( 1 ) {
31 i f ( a d j u s t C o o l i n g ( s h u n t R e s i s t a n c e ) == E FATAL){
32 s y s R e s e t ( ) ;
33 }
34 p r o c e s s T a s k ( ) ;
35 }
36 }

Listing 2. Source code under scrutiny.

Debug Information: From the compiler (we use Keil µVision
3 v3.23) generated debug information, we can (automatically)
derive the following correspondence between memory addresses
and global variables in the C-code.

C-Code Variable Type Memory Addr. Symbol
sysPowerDissipation UINT8 0000H r0

sysVoltage UINT8 0001H r1
sysCurrent UINT8 0002H r2

shuntResistance UINT8 0003H r3

6.4 Abstract Interpretation Findings
We run our abstract interpretation on the binary code of

Listing 2. The analysis is able to disprove invariant Req3 and
reveals a major problem in the code.

Possible divide by zero: The method adjustCooling() obtains
the value for the shuntResistance from the call to sysConfigure()
in the main loop. Note that, sysConfigure() requests the value of

the shunt resistor from the overlaying industrial control system.
Suppose there is a misconfiguration in the control system and
the value for the shuntResistance erroneously takes on the value
0x00, then, the calculation in line 12 causes a divide by zero.

At the Intel MCS-51 architecture a division by zero is a
particular tricky issue. For the DIV A ÷ B instruction, the
datasheet [22] states:

If B had originally contained 0x00, the values re-
turned in the Accumulator and B-register will be unde-
fined and the overflow flag will be set. The carry flag is
cleared in any case.

However, the exact interpretation of this corner case remains
with the IP-core designer. Considering the actual register level
design of the divide instruction, the three most likely implementa-
tion options are:

(1) The Accumulator is reset to 0x00, thus, regardless of the
actual inputs, the cooling system will always be turned off
in line 16. Thus the error is likely to go unnoticed in normal
operation as long as additional cooling is not required.

(2) The Accumulator remains unchanged (i.e., keeps the last
value), thus, the variable sysCurrent will be assigned the
value of the shuntVoltage calculated on line 12.

(3) The Accumulator is assigned a random value, i.e., the vari-
able sysCurrent is random too, causing unpredictable cooling
behavior.

For the presented case study, we attached our monitoring
unit to the freely available Intel MCS-51 IP-core of Oregano
Systems [23], which implements (2).

Error Scenario: Suppose the system actually uses a shunt resis-
tance of 2 Ohms and the overlying control system wrongly sends
a shunt resistance value of 0x00 to the target application. Further,
suppose that the current consumed by the flyback converter is 3
Amps, thus, well within its safe operational range. Then the mea-
sured voltage across the shunt resistor equals 6V . The described
division by zero occurs and wrongly assigns the value of 6 to the
variable sysCurrent in code line 12.

Consequently, with a measured sysVoltage of 4V , the deter-
mined power dissipation in line 13 evaluates to 6A×4V = 24W ,
which clearly exceeds the maximum power dissipation of 16W .

Derived test case: Finally, the test-case generator will derive a
test case with the following semantics:

@ 6 adjustCooling(shuntResistance← [ 0)
@ 10 4← [ readADCPort(PORT V ADC)
@ 11 3← [ readADCPort(PORT I ADC)
@ 13 assert(sysPowerDissipation <= 16)
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In the remainder of this section we will demonstrate how this test
case can be automatically classified as real bug by use of the PMU
on the target platform.

6.5 Test-case validation
As reported in Section 4, the CEVTES framework supports

online and offline monitoring of specification items, which can be
conveniently applied here.

Offline Monitoring Offline monitoring allows arbitrary arith-
metic and logic connections among atomics, thus, we can state
the specification items in a 1:1 manner (List. 3).
1 begin o f f l i n e i n v a r i a n t F l y B a c k C o n v e r t e r :
2 @every PC :
3 # 1 : r2 <= 5 ;
4 # 2 : r2 >= 0 ;
5 # 3 : r1 <= 5 ;
6 # 4 : r1 >= 0 ;
7 # 5 : r0 <= 1 6 ;
8 end@ ;
9 end o f f l i n e i n v a r i a n t ;

Listing 3. Invariants for offline monitoring.

Invariants #1 . . .#4 relate to the requirements Req1 and Req2,
whereas #5 covers the power dissipation limitation, i.e., Req3.
These invariants will be checked with every memory update δ

sent by the RAM event logger of the PMU (cf. Fig 2), and need a
host computer to be evaluated. By applying the derived test-case,
the property violation proves true, thus, the found warning is a
true error.

Online Monitoring The flyback converter specification can
also be tracked online, i.e., during the operation of the embedded
system, without the intervention of a host computer. This is done
by the invariant checker of the PMU and can handle the exact
same invariants as shown for the offline monitor.

Nevertheless, the properties postulated so far, are delusive
particularly with regard to Req3 as they make no use of the re-
lational characteristics among current and voltage to express the
power dissipation limits. Instead of claiming that r0 ≤ 16, we
could claim that r1× r2≤ 16, thus, the evaluation does not rely
on the power dissipation calculated by the microcontroller appli-
cation.

Whereas requirements Req1 and Req2 can be directly ex-
pressed, the rational function of the power dissipation limitation
is approximated by a linear inequality to meet a logahedral prop-
erty for the invariant checker, (cf. Sect. 4). This inequality is a
half plane defined by a straight line I = k×V + d through the
points PA(3,5) and PB(5,3), with a slope of k = 3−5

5−3 = −1 and
an y-intercept of 8, leading I + 1×V ≤ 8. The preprocessed
requirements 1. . . 3 for the hardware invariant checker unit are
stated in Lst. 4. Note that the invariants now take into account
the arithmetical connection between r1 and r2, i.e., current and
voltage.

1 begin o n l i n e i n v a r i a n t F l y B a c k C o n v e r t e r :
2 @every PC :
3 # 1 : r2 <= 5 ;
4 # 2 : r2 >= 0 ;
5 # 3 : r1 <= 5 ;
6 # 4 : r1 >= 0 ;
7 # 5 : r2 + 1* r1 <= 8 ;
8 end@ ;
9 end o n l i n e i n v a r i a n t ;

Listing 4. Invariants for online monitoring.

Geometrically speaking, the final specification consists of
five half planes confining a convex polygon in two dimensions, as
shown in Fig 5.

Volts

Amps

V ≤ 5V

V ≤ 5V

V ≥ 0V

V ≥ 0V

I ≤ 5AI ≤ 5A

I ≥ 0AI ≥ 0A

P / 16W

P / 16W

FIGURE 5. FlyBack Converter Specification (approximation).

When executing the test-case the PMU correctly detects the
property violation in a non-intrusive and passive way, thus, prop-
erty checking is parallel to the execution of the test-case, where
the IP-core runs at its nominal clock speed, i.e. 8 MHz. The
property violation is reported to the host computer, where the
test-case generation took place. However, the PMU may also
work in a self-sufficient mode and stay attached to the IP-core –
even after the testing and verification phase of the product – and
serve as concurrent oracle.

7 CONCLUSION
In this paper, we have argued that combining formal verifica-

tion approaches with testing may pave the way for exhaustive tests
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of embedded system software. In practice, domain knowledge
is required to extract an abstract model from a system in order
to keep the number of states manageable. A test engineer may
then verify given properties or be able to disprove them. Prop-
erty violations, however, may turn out as “false negatives” since
they were derived from an abstract model rather than the concrete
system. The contribution of this paper is a method that either
automates the verification of these violations or discards them.
We introduced a property monitor unit that supports checking
properties on the fly, i.e., during normal operation or test-case
execution of the target system. The property monitor can easily
be attached to an industrial IP-core running on an FPGA.

As future work, we will try to improve the flexibility of the on-
line checks in hardware, allowing for more complex invariants to
be checked dynamically. Furthermore, we plan to conduct some
real-world case studies in order to assess the potential of this
solution, possibly based on our earlier experiences with verifying
industrial embedded software [16].
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