
User Guide

Norman Hansen

March 9, 2015

1 Plot options

The plot options section allows the user to specify the appearance of the
desired graphical output. Using the edit fields X-axis and Y-axis, the user
can specify which dimensions of the hybrid system should be plotted after the
reachability analysis is finished. Figure 47 shows a plot of the dimensions 1 and
2 in a 9-dimensional hybrid system.

Figure 1: Edit fields to specify the dimensions to plot

If the user wishes to generate plots of other dimensions without restarting the
reachability analysis, the New Plot button can be used. Therefore, changing
the values in the X-axis and Y-axis edit fields to the dimensions for the additional
plot and to click the New Plot button would suffice. The new plot would appear
in a separate figure window.

The Export plot button can be used to export the plot from the GUI’s
main window. Firstly, the user has to choose a file format from the dropdown
menu. Then, clicking the Export plot button will open an input dialog. This
dialog allows the user to enter a filename and a sub-path in which the file will be
stored. For instance, the input test will store the file test.fig in the working
directory. However, test/test will save the file in the folder test with name
test.fig.

The option Erase previous plot would delete the plot inside the GUI’s
main window before the next plot of the newly started reachability analysis is
generated. If this option had not been set, the plot of the next reachability

1

Figure 2: New plot button

Figure 3: Export button

analysis would be plotted on top of the previous plot remaining in the GUI’s
main window.

Figure 4: Erase previous plot option

The option Animated plot will force MATLAB to display each set to be
plotted as soon as it has been computed in the figure windows. The advantage
of this option is that the user would be able to see the systems in motion and
which overlapping sets have been reached first because it was plotted earlier.
However, as a drawback, the plots generated are slightly slower.

To increase the plotting speed of computed sets, the edit field Plot every X
set allows the user to specify a stepsize to determine which sets should be plot-
ted. For instance, the value 3 will plot only every third set in the flowpipe (e.g.
sets 1,4,7, ...). The other sets will be omitted. However, the last computed set is

2

Figure 5: Animated plot option

always plotted red, such as sets intersecting a guard or sets in which a fixpoint
has been detected1, which is indicated with orange or turquoise respectively.

Figure 6: Plot every X set option

Enabling the Output interval bounds option will cause the program to
generate interval output in the Interval output section in the lower right
corner.

Figure 7: Option to enable interval output

Figure 8 shows an example of such an interval bounds output.

1In the event that fixpoints should be detected, the correspondent option in the Fixpoint
detection section would also have to be enabled. For further informations on fixpoint detec-
tion, see 10

3

Figure 8: Interval output (here for dimensions a and b)

2 Flowpipe construction

The Flowpipe construction section can be used to choose between different sce-
narios and types for the reachability analysis. The upper dropdown menu allows
the user to choose a scenario from the list:

� SpaceEx

� ConstU

� NoScale

� AlgoInv

� AlgoInv2

Each Scenario has its pros and cons. For instance, the NoScale scenario has
some issues with very overapproximative initial sets. The ConstU scenario
(from []) however, is generally faster than the others if used with the correspond-
ing initial overapproximation. This assumes too that the input U is piecewise
constant between the timesteps. Depending on the choice of the scenario, the
accuracy and time elapse of the analysis may change. Moreover, the choice of
AlgoInv or AlgoInv2 allows, contrary to the other algorithms, invariants from
the hybrid model to be taken into account during the analysis. More about the
use and semantics of invariants can be found in section 2.1.

As mentioned previously, the NoScale scenario (from [2]) is usually very
overapproximative concerning the first computed set. Although overapproxi-
mation may be suitable in some cases, we would generally not recommend the
use of this scenario because of this drawback.

Choosing SpaceEx causes the software to use the algorithm as explained in
[1].

When SpaceEx, ConstU, AlgoInv or AlgoInv2 are chosen, an additional
dropdown menu appears on the right side.

This menu allows for the choice of different initial overapproximations. These
are SpaceEx initial overapproximation2 and PreciseOmega0 initial over-

2This overapproximation corresponds to the descriptions of the initial overapproximations
from [1]

4

Figure 9: Dropdown menu to chose the flowpipe-construction scenario

Figure 10: Dropdown menu for the choice of the initial overapproximation

approximation3 for the scenarios SpaceEx, AlgoInv and AlgoInv2. The
ConstU scenario defines a third initial overapproximation ConstU initial
overapproximation4. Note that the choice of this initial overapproximation is
crucial for the time consumption of the analysis. This results from the evalua-
tion of the support function for this set in each computation step which includes
a non-linear optimization.

The lower dropdown menu allows the user to choose the type of flowpipe
generation. Possible choices are:

� Evaluation matrix (supported by all scenarios)

� Function representation (supported by SpaceEx and ConstU scenario)

Evaluation matrix will cause the sets to be internally represented using a
matrix with the evaluation of all support functions in the specified directions5.
The choice of Function representation results in a very fast flowpipe gener-
ation since a chain of function calls, that can be generated very quickly, is used
to represent the flowpipe. However, these functions need to be evaluated if plots
and cuts, etc. have to be generated. This might take a very long time in cases

3The PreciseOmega0 initial overapproximation was taken from [3]
4ConstU initial overapproximation is given in []
5Details on the selection of the directions to use are explained in section 7

5

Figure 11: Dropdown menu to specify the flowpipe construction type

where (multiple) optimizations have to be performed. Moreover, if multiple sets
need to be evaluated, some of the calculations for the evaluation are very likely
to be performed multiple times, which is very inefficient. Due to these reasons
and some implementation related problems with the correctness of the results
does the GUI restrict the choice of possible parameters and configurations for
the analysis in case the function representation shall be used. The following
table gives an overview of our suggestions for the choice of the type for the
flowpipe representation:

Plots Transitions
with
guards

fixpoint de-
tection

Flowpipe repre-
sentation type

few sets6 no no function represen-
tation

multiple * * evaluation matrix
(plots or sets)
* no yes evaluation matrix
* yes * evaluation matrix

The use of Evaluation matrix is generally the fastest choice if multiple
sets of the flowpipe should be plotted or multiple plots of different dimensions
should be generated.

In the case that invariants should be handled, the user has no choice over
the use of internal representation since the algorithms AlgoInv and AlgoInv2
work only with the evaluation matrix representation. For more information
or specifics regarding invariant handling using AlgoInv (from [3]) or AlgoInv2
please read 2.1.

The option Cut after last intersection determines whether the flowpipe
for the last considered location/mode is cut after a transition has been detected
or completely displayed.

Figure 13 shows on the left side the result for a simple example with enabled
Cut after last intersection option and on the right side the correspondent
plot with disabled Cut after last intersection option.

6

Figure 12: Option to cut off the flowpipe after the last detected transition

Figure 13: Comparison between flowpipe with enabled Cut after last inter-
section option (left) and disabled option (right)

2.1 Handling invariants

If the model file contains invariants and if AlgoInv7 or AlgoInv28 is used, they
are directly considered. Assuming the use of those algorithms, the reachable
states in a location are bounded by the invariant such that no values outside
the invariant are part of the computed sets in the flowpipe. The use of invariants
with those algorithms do not have any influence on the system’s behavior with
regards to the transitions and do not necessarily force the system to take a
transition.

However, the use of invariants does not affect the decision if spontaneous
transitions should be taken. Thus, spontaneous transitions are always taken if
their criterion is fulfilled independent of any invariant in the current location/-

7taken from [3]
8For further explanations see the developer documentation

7

mode. Nevertheless, the invariant of the destination location/mode has to hold,
or else the analysis will terminate at such a point.

If another scenarios such as SpaceEx, ConstU or NoScale are used, in-
variants contained in the model are completely ignored. Figure 15 shows the
difference between an analysis of a model (see figure 14) with invariants using
the SpaceEx and the AlgoInv scenario.

Figure 14: Hybrid automata with invariants

Figure 15: A Hybrid system described in figure 14 using ”AlgoInv” (left) and
”SpaceEx” scenario (right).

8

3 Set representation

The set representation section encapsulates the Input Set option. A .m model
file may define multiple representations for the input set U . For instance, a
model file defines the input U as a polytope, a zonotope9 and a symmetric box.
Depending on the representation of U used during the analysis, the total com-
putation time may change. After an input file has been chosen, the dropdown
menu containing all defined and supported representations for U appears and
the user can choose which of them he wishes to use. It is recommended to
use symmetric boxes if U can be represented as symmetric boxes yield a better
performance in the analysis (e.g. compared to polytopes, since there is no need
to solve linear programs).

Figure 16: Dropdown menu to specify the representation of the input set

9Currently only zonotopes with the origin as center can be used

9

4 Support function representation

The support function representation section provides the user with the choice
of a method to solve linear programs.Linear programs are used to represent the
support function of polyhedra. Possible choices are:

� linprog

� fmincon

� cvx

� mpt

Linprog and fmincon are build-in matlab functions to solve optimization prob-
lems. CVX and MPT are third-party optimization tools. To make use of CVX
or MPT, the corresponding tool has to be installed on the user’s computer. To
initialize these tools, the Initialize additional tools button can be used.

Figure 17: Dropdown menu to choose the optimization method to solve the
linear program of a support function

Depending on the user’s choice of optimisation methods, different algorithms
would then available for use. For linprog, the algorithms MediumScale,
LargeScale and Simplex can be used. Fmincon allows the choice between
active-set, interior-pint, trust-region-reflective and SQP. The selectable algo-
rithms for MPT are GLPK, CDD Criss-Cross, CDD Dual Simplex and
SeDuMi. CVX can only be used with its standard algorithm.

Figure 18: Dropdown menu to choose the optimization algorithm to solve the
linear program of a support function

Note that the choice of the algorithm may have a significant influence on the
size of overapproximations, the elapsed time and even the ability to evaluate a

10

support function. We recommend to use MPT with the Criss Cross algorithm
in order to achieve the best results concerning the time elapse and urge not to use
CVX with its standard algorithm (for reasons of time consumption). Moreover,
the representation of guards and invariants could be more accurate using MPT
in cases where other algorithms cause problems10. In the event that the chosen
optimization method encounters problems during execution, the optimization
methods exitflag is written with a warning to MATLAB’s command window.
The respective meanings of the exitflag is found in the documentation of the
corresponding optimization method. In the case that an exitflag states the
inability of evaluation of a support function, the computation is aborted and
the message on figure 19 is shown to the user.

Figure 19: Message dialog indicating that the chosen algorithm is not suitable
for analyzing the model with the specified parameters

However, even if a warning with an exitflag is issued, the analysis might still
work fine. For instance, linprog issued warnings with exit flag -7 during our
tests indicating that a search direction had became too small and no further
progress could be made. For this particular exitflag the analysis continued
without displaying a message dialog. Nevertheless, if such warnings were to
occur during an analysis, the computation should be re-executed using another
optimization method or algorithm, especially if the result do not appear as
expected.

10For further details on this issue, see the developers documentation in the section Infinity-
problem

11

5 Intersection

This section elaborates on the calculations of intersection sets with guards. To
compute the set resulting from the intersection of a set with an equality guard,
an optimization has to be performed unless the fast intersection approach was
used. The upper dropdown menu provides the user with different optimization
methods he may use to perform this task. Possible choices are:

� fminsearch

� fminunc

� dichotomicSearch

� RayAlgo

� fast intersection

Fminsearch and fminunc are build-in MATLAB functions. The dichotomic
search method is implemented as described in [3]. The minimization approach
referred to as RayAlgo is implemented as described in [4]. The fast intersection
method overapproximates the intersection as the minimum of two support func-
tions. As the name indicates this method is very fast because no optimization
is performed. The drawback using the fast intersection is the need to re-
evaluate intersected sets which yields in additional computation overhead. For
further informations regarding this issue read the developers documentation.

Figure 20: Dropdown menu to chose the method used to calculate the intersec-
tion set between sets from the flowpipe and equality guards

The lower dropdown menu can be used to chose an optimization method
which shall be used if the intersection of a set with an inequality guard has to
be calculated. Possible choices for this task are:

� fminbnd

� fmincon

� RayAlgo

� fast intersection

12

The methods fminbnd and fmincon are build-in MATLAB functions. The
RayAlgo is the same for equality guards. The only difference is the search
space considered for the minimization of a convex function — only positive real
values for the inequality guards. The fast intersection method is also the same
for equality guards with the difference, that only one minimum is computed for
inequality guard intersections.

Figure 21: Dropdown menu to choose the method to be used to calculate the
intersection set between sets from the flowpipe and inequality guards

13

6 Clustering

The Clustering section allows the user to chose how to proceed when multiple
sets intersect with the same guard. If the precluster option is enabled, all
sets which intersect with the guard are clustered using the convex hull and the
intersection is then calculated. Figure 23(a) shows that only the intersection
of one set (in yellow) — the convex hull of two sets with the guard y == 0
— is considered. If this option is disabled, the intersection of each set with
the guard is calculated and the resulting sets are clustered using the convex
hull method after the intersection calculations. The latter approach results in
longer computation time if multiple sets were to intersect with a guard because
multiple intersections (instead of one) would have to be calculated. Figure 23(b)
illustrates the case where 2 sets (yellow) intersect the guard y == 0.

Figure 22: Checkbox to enable pre-clustering

Figure 23: Result with enabled (a) and with disabled (b) precluster option

14

7 Directions

The Directions section allows the user to specify how many directions are to
be used to overapproximate the convex sets in the analysis. The box option will
generate two directions along the axes of every dimension of the hybrid system.
Figure 47 shows a plot using the box option.

Figure 24: box option

The oct option will generate eight directions for every pair of dimensions
such that the directions in a plane formed by two dimensions are equally dis-
tributed.Figure 48 shows the same plot as figure 47 but using the oct option
instead of the box option.

Figure 25: oct option

The user option enables the user to specify an arbitrary angle between 0
and π

2 , by entering a divisor of π, which should be used for the rotation to
generate directions in each pair of dimensions. Figure 49 shows the already
above mentioned plot using π

6 as value for the user option.

Figure 26: user defined directions

Generally, more directions lead to higher accuracy in the representation of
the convex sets. However, more directions lead to much longer computation
time. The user should consider that for higher dimensional system (i.e. a 9
dimensional system) the use of the box option generates in total fewer directions
(18) than the use of the oct option (162).

15

8 General options

The general options section allows the user to configure some important general
options. Before any reachability analysis can be started, the user need to provide
an input file by clicking the Locate Input File button. Clicking this button
will open a dialog which can be used to pick an input file.

Figure 27: Button to select a model file

After a .m input file has been chosen, the user can decide if the values for the
Local time horizon and the Timestep shall be imported from the input file or if
the values provided by the GUI shall be used. This choice is done by enabling
the Import options from file checkbox.

Figure 28: Option to import different parameters from model file

Alternatively, Simulink Stateflow® models can also be used as input files.
Chapter 19.2 provides further explanation on this input file format.

If the Import options from file checkbox is not enabled, the user can
determine the timestep which should be used during the reachability analysis
by entering a double value in the Timestep field. A small timestep will result
in more accurate results but cause longer computation time. Certain Timestep
values might lead to unrecognized intersections with guards (especially if the
Evaluation matrix representation has been chosen).

The Local time horizon field allows the user to enter a time horizon for the

16

Figure 29: Edit field to specify the size of the timestep to use

flowpipe in each location/mode of the model. The construction of the flowpipe
in a location/mode will end when the local time horizon is reached. Due to
implementation decisions, the flowpipe for each location/mode is calculated to
this time horizon. Therefore, the user should choose a value (a double) as small
as possible but as big as required.

Figure 30: Edit field to specify the time horizon

The value in the Max. transitions to take field determines how many dis-
crete steps (transitions) can be performed at maximum during a reachability
analysis. A value of 3 will limit the reachability analysis to the computation
of three flowpipes (each for one visited location/mode), meaning that at most
two taken transitions are considered. Depending on the model, increasing this
value can affect the computation time if guard intersections and resets need to
be computed.

17

Figure 31: Specify the maximal number of locations/modes to consider during
a single path of the computation

9 Spontaneous transitions

9.1 Semantics

A spontaneous transition is a transition to be taken in the event a certain
criterion is met. Compared to usual transitions, this is not expressed by a
guard which has to be satisfied in order to take the transition but can be seen
as an event that triggers the spontaneous transition. We consider two different
types of such events, namely the detection of a fixpoint or the elapse of a certain
time.

For fixpoint triggered transitions the characteristics are very simple. If fix-
point detection is enabled and a fixpoint has been detected with the specified
tolerance, the transition is taken. The only problem that the user has to keep in
mind is that fixpoints can only be detected within a single location. That means
that the search for a fixpoint relates always only to the part of the flowpipe gen-
erated by the current active location. For instance, if the set a = [−5; 10] was
reachable even before a transition was taken and the subset b = [2; 3] is com-
puted, no fixpoint would have been detected although there exists one. In case
that b was computed before the transition was taken, the fixpoint would be
detected.

For a time triggered spontaneous transition, the absolute point in time, in
which the transition should be taken, has to be modelled. If a transition should
be taken at time t, it would only be possible to take the transition within the
interval [t; t+ timestep]. Thus, if t = 1 and timestep = 0.7 the transition could
be taken at an elapsed time of telapsed = 1.4. The resulting flowpipe may be
completely different if another timestep is used, e.g. 0.1, for which the computed
set at the point of reaching time 1 is always smaller and more accurate.

It may occur that a model contains a location with both, guarded and spon-
taneous transitions. Which transition has to be taken will be decided depending
on which criterion is fulfilled first. If the guard is satisfied first the correspondent
transition is taken. In case a fixpoint is detected before the guard is satisfied
and the specified time for the time triggered transition is reached, the fixpoint

18

triggered transition will be taken. In case the specified time t is reached be-
fore satisfying the guard and without detecting a fixpoint hitherto t, the time
triggered transition is taken.

19

10 Fixpoint detection

The Fixpoint detection section enables the user to influence the used fixpoint
detection algorithm. First, the fixpoint detection has to be enabled using the
correspondent checkbox.

Figure 32: Option to enable the fixpoint detection

The analysis detects a fixpoint if Ωi(l)−Ωi+k(l) < tolerance for all directions
l within a location/mode, Ω(l) being the support function of a reachable set.
The Tolerance edit field can be used to define a value describing the maximal
gap between two values which are considered equal for the fixpoint detection. A
message-box informs the user additionally to the text output in the command
window in case a fixpoint is found. Fixpoints are colored turquoise when plotted.

Figure 33: Edit field to specify the recognition tolerance

The value in the lowest edit field determines the value k, defining the stepsize
for fixpoint checks. A value of 10 would imply that only every 10th set in the
computed flowpipe is compared to the 10th following set.

Figure 34:

To enable fixpoint triggered transitions during the reachability analysis, it
is required that the user enables the fixpoint detection as described. In case
a model contains a fixpoint triggered transition and the fixpoint detection is
disabled, a message box informs the user about this flaw. The fixpoint detection
is disabled by default because it requires additional computation time.

20

11 Multithreading

Using the Enable checkbox the user can enable the use of multiple threads.
Enabling the checkbox will simply call the matlab function matlabpool local.
If this feature is already in use, the configuration possibilities using the GUI
might not work as expected.

Figure 35: Option to enable multithreading

Using the Number of threads edit field, the number of parallel threads
can be chosen.

Figure 36: Edit field to specify the number of threads to use

The multithreading feature affects the computation of the evaluation results
for all but the AlgoInv2 scenario directly, which means that the evaluation
results for multiple directions are computed in parallel. Furthermore, the eval-
uation of a support function represented by a function handle will be computed
for multiple directions in parallel. This affects, for instance, the reconstruc-
tion operations in AlgoInv2, the reset computation or the computation of set
intersections.

21

12 Initial values

The two edit fields in this category become active when a Simulink Stateflow
model (.mdl file) is loaded. The left field can be used to define the initial
set to use for the reachability analysis. The right field contains the definition
of the input set, previously referred to as U . Using .mdl files as input, it is
not possible to define input sets U as balls, boxes or zonotopes, but only as
polyhedra. The constraints for the initial polyhedra are given as a linear term
without multiplication signs or brackets (e.g. x+ 3y−2.21var3 + 0.5x) followed
by a comparator operator (<=, >=, ==) and a constant. It is also possible to
specify constraints of the form 1 <= var3 <= 3.21.

Multiple constraints are separated by &. The variables used in the left edit
field have to be consistent with the variable names used in the .mdl model and
the variable names used in the right edit field have to be consistent with the
names of the variables of the input set in the model. The variable identifiers
can be seen on the right side and are displayed in two lists.

Figure 37: Variables from stateflow section

Moreover, the user has to ensure, that both specified sets are closed in all
dimensions.

22

Figure 38: Edit field containing the constraints for the initial set

Figure 39: Edit field containing the constraints for the input set U

13 Troubleshooting in case of numerical prob-
lems

During the analysis of hybrid systems, the following dialog shown in figure 40
might appear.

In this case, the program might not be able to reconstruct a function handle
representation based on the current evaluation results of a support function due
to numerical inaccuracies. This problem can sometimes be solved by simply
choosing a different optimization algorithm for the representation. By clicking
the Choose another algorithm checkbox, the user has the option to manually
choose or let the program automatically choose a different algorithm.

23

Figure 40: Dialog indicating numerical problems during evaluation of support
functions

Figure 41: This checkbox enables the possibility to chose a different algorithm

24

In the latter case, all algorithms are tested and the first working algorithm
is used. To choose an algorithm manually, the user can use the two dropdown
menus. With a click on the Apply button the choice will be tested. Once a
working algorithm has been chosen, the Proceed button will cause the reacha-
bility analysis to continue using the specified algorithm as optimization method
for support function representation.

Choosing a different algorithm might not always work. For such cases, only
a further overapproximation can be applied to resolve the problem. This can
be done by enabling the Relax constraints checkbox.

Figure 42: This checkbox enables the possibility to relax the constraints of the
support function’s linear program

The edit field in the Relax constraints section allows the user to enter
a value which will be added to the support function evaluation result in every
direction. Thus, the value should be kept as small as possible to minimize the
overapproximation.

Figure 43:

25

After typing in the value, pressing enter will start a check if the entered
value solves the problem. In case it does, the Proceed button will be enabled.

It is also possible to make use of both approaches to continue the compu-
tation. If a value has been entered to increase the overapproximation and the
automatic choice of an algorithm is made, the test for a suitable algorithm
will be made using the value for further overapproximation. In the same way
the manual choice of a different algorithm will consider the value for further
overapproximation.

26

14 Transition handling

Figure 44: Transition handling section

The dropdown field in this section allows to define which of multiple possible
transitions shall be taken. The possible options are:

� Manual choice

� Most intersections

� First detected

� Last detected

� All

Manual choice opens every time a choice can be made a dialog which allows
the user to pick one of the detected transitions. Figure 45 shows this dialog.

Figure 45: Dialog for chosing the transition to proceed with

The Stop analysis Button (marked in red) causes the analysis to stop and
the GUI to plot the result of the analysis up to the computed point. In contrary
to the Stop analysis button, the Proceed button will cause the analysis to
proceed taking the transition picked from the list of transitions. In the case
where multiple transitions are considered, or it is not clear which transitions
should be taken, it is possible to use the Store computation state button
(marked in blue). After the computation state has been stored, e.g. the second

27

transition can be picked. In the case where the first transition should also be
considered, it is possible to load the stored computation state from the Stored
computation steps section (see 15) which will result in displaying the same
dialog to pick a transition again and choose the first transition to proceed. The
plots of both analysis results will overlap in the resulting figure.

As an alternative to Manual choice, a strategy on how to pick the transi-
tion to proceed with can be chosen in the case where the program should run
autonomously without further user interaction. As indicated by their names,
the option First detected will automatically choose the transition that can be
taken at the earliest possible time and Last detected correspondingly at the
latest possible transition. The option All will consider all transition paths up
to the specified depth in the General options section. A further options is
Most intersections, which chooses the transition with the most intersecting
sets from the computed flowpipe.

If there are to be multiple candidate transitions, with which the the compu-
tation may proceed, the transition with the highest priority is chosen.

28

15 Stored computation steps

Figure 46: Stored computation states section

This sections allows the user to continue an analysis from a previously stored
computation state. To load a stored state from the list, it has to be selected
and the Continue analysis from here button (green) needs to be clicked. If
a stored state is no longer needed, it can be deleted by selecting the state from
the list and clicking the Delete stored state button (red). Please note, that
all stored computation states are deleted in case a new analysis is started using
the Start Button in the lower left corner of the GUI main window.

29

16 Interval output

This section displays the interval bounds for each dimension in the case where
the Output interval bounds option has been enabled. Enabling this option
may increase the time for the analysis where directions are badly chosen. (There
are dimensions without directions along the dimension axes.)

17 Further displayed information

Under the Start button is the name of the currently loaded model file displayed
which will be analyzed when the start button is pressed. The time consumption
Total time elapse and the time used to generate the plot Plot for the analysis
displayed after it has been terminated are shown in the lower right corner.

Further information is displayed in MATLAB ’s command window. These
are, for instance, the time consumption to generate the flowpipe for single modes,
log outputs of the steps of the analysis that are currently being executed or have
already been completed, notifications and warnings indicating possible problems
during the analysis and critical error messages.

18 Additional Screenshots

Figure 47: Plot of dimensions 1 and 2 of a 9-dimesional system

30

Figure 48: Same output as in figure 47 but with use of the oct-option

19 Input file format

19.1 Matlab Functions as Input Files

The basic input file format is a simple text file defining a MATLAB function
without input parameters. The output parameters of the function define the
hybrid system and some options.

We explain the file format using a bouncing ball example. The following
line defines the function name getBouncingBallInput which has to be the
file name too.

1 [s t a t e s , q , qa , t r a n s i t i o n s , I ,U, c o n f i g u r a t i o n] = getBouncingBal l Input

Output parameter q defines the locations/modes of the hybrid system. In
our example the system consists of one location/mode with identifier 1.

1 q = [1] ;

The initial location/mode is defined setting the value of qa to the start
locations/modes identifier.

1 qa = 1 ;

The properties of a location are modelled using the states cell array. Each
location/mode has an index defined through q and a correspondent entry in the
states cell array containing a structure defining the properties.

31

Figure 49: Same output as in figure 47 but with use of the user-option with π
6

The continuous dynamics of systems described in the input file can be of
the form ẋ = Ax + b + BU , U being a convex input set. Next, we define
these continuous dynamics for each location/mode, setting the values for the
correspondent matrix A to

1 s t a t e s {1} .A = [0 , 1 ; 0 , 0] ;

The matrix A for state 1 implies that the system is 2 dimensional. This has to
be consistent with the dimensions in all other locations/modes.

We set the values for the constant part of the flow description to

1 s t a t e s {1} . b = [0 ; − 9 . 8 1] ;

Similar to A we define B describing a 2 dimensional free input.

1 s t a t e s {1} .B = [1 0 ;0 1] ;

The matrix B has to be consistent with the matrices B from all other loca-
tions/modes in dimensionality as all locations refer to the same free input set
U . Please note, that U has not to be of the same dimensionality as the hybrid
system (implicitly defined through matrices A). Furthermore, the smaller the
dimensionality of U , the faster evaluations can be computed.

To complete the description of the hybrid system, the transitions have to be
defined. This is done using the transitions cell array of structures defining
with each cell of the array a different transition.

The bouncing ball example has only one transition with an equality guard
and an inequality guard. The equality guard is specified as following

32

1 t r a n s i t i o n s {1} . e g u a r d s d i r = [1 0] ;
2 t r a n s i t i o n s {1} . e guards va l = [0] ;

and describes the guard condition that
(
0 1

)
·
(
dimension1 dimension2

)
≤ 0

The inequality guard is specified similarly as

1 t r a n s i t i o n s {1} . i g u a r d s d i r = [0 1] ;
2 t r a n s i t i o n s {1} . i g u a r d s v a l = [0] ;

describing the guard condition that
(
0 1

)
·
(
dimension1 dimension2

)
≤ 0

If further guards are be introduced, the matrices eguards dir or respectively
iguards dir have to be enlarged with subsequent rows describing the normal
vectors of the hyperplanes being the newly considered guard and the corre-
sponding val vector has to be enlarged by the value describing the distance of
the hyperplane to the origin.

The bouncingball example uses a reset on its single transition where the
second dimension is set to its value multiplied by −0.6. This is modelled using
a reset matrix

1 t r a n s i t i o n s {1} . ResetMatrix = [1 , 0 ; 0 , −0 .6] ;

The reset matrix’s dimensionality is equal to the system’s dimensionality. If a
dimension is set to zero the correspondent row in the matrix has to be set to
0. Furthermore, it is possible to add constants to specific dimensions during a
reset. Those constants are specified using vector W . A value c in the second
entry of W would mean that c is added to dimension 2 in case the transition
is taken. Because the bouncingball example does not define any resets using
constants, we set the entries of W for both dimensions to 0.

1 t r a n s i t i o n s {1} .W = [0 ; 0] ;

Up to now, the guards and resets for the transitions have been defined but
the start and the endpoint specification are missing. As the model consists of
only one location/mode, the startpoint and the endpoint are the same

1 t r a n s i t i o n s {1} . from = 1 ;
2 t r a n s i t i o n s {1} . to = 1 ;

The values of both structure fields refers to the index of the correspondent
location/mode in q and the states cell array.

The initial set I is defined using a polyheder representation such that C ∗x ≤
d.

1 I . po lyheder .C = [1 0;−1 0 ;0 1 ;0 −1] ;
2 I . po lyheder . d = [2 ; − 2 ; 0 ; 0] ;

Once again, the dimensionaity of I has to be the same as the dimensionality of
the system (A,W and ResetMatrix matrices)

The input set U can be specified using different representations of convex
sets, like polyheder (same definition as I), Zonotopes (actually only with center
0) and symmetric box.

33

1 U. polyheder .C = [1 0;−1 0 ;0 1 ;0 −1]; %p o lyh ede r d e f i n i t i o n
2 U. polyheder . d = [0 ; 0 ; 0 ; 0] ;

1 U. zonotope . c = [0 ; 0] ; % zonotope d e f i n i t i o n
2 U. zonotope . g=0.01*eye (2 , 2) ;

1 U. box = [0 ; 0] ; % d e f i n i t i o n as symmetric box

The computation speed can increase if U is of lower dimensionality and also
in the case if U can be defined as such from the symmetric box representation.

We will now extend the example as introduced above with a new spontaneous
transition. Therefore, we introduce a further transition from location 1 to 1 by
adding an entry to the transitions cell array

1 t r a n s i t i o n s {2} . from = 1 ;
2 t r a n s i t i o n s {2} . to = 1 ;

To make the transition spontaneous a correspondingly named field can be
added and set to true.

1 t r a n s i t i o n s {2} . spontaneous = true ;

To make the new transition with index 2 triggerable upon reaching a fixpoint,
set

1 t r a n s i t i o n s {2} . t imee lapse = −1;

To make the transition triggerable upon reaching a certain point in time t,
set it to

1 t r a n s i t i o n s {2} . t imee lapse = 10 ; %t =10 in t h i s case

Thus, a value greater than zero defines a point in time in which the transition
is taken if the system is in the location/mode where the transition starts. If
the value for timeelapse is set to -1, the transition is considered a spontaneous
transition which has to be taken when a fixpoint has been reached. This sort of
transition works only, if the user has enabled the fixpoint detection in the user
interface.

The .m input file format allows to define some standard options, too. Those
are the timestep r and the local time horizon T. To set both values, the con-
figuration structure is used.

1 c o n f i g u r a t i o n . t imehor izon = T;
2 c o n f i g u r a t i o n . t imestep = r ;

From both values the number of sets in the flowpipe is calculated as T
r .

There is one more feature supported by the model using the .m file format.
This is the possibility to define invariants for locations/modes. Invariants of the
form C ∗ x ≤ d are modeled similar to the initial set or guards. For the state
which should have an invariant, a correspondent field C is added containing the
matrix C of the invariant equation. The values d are assigned correspondingly
to the field d.

34

1 s t a t e s { index } .C = C;
2 s t a t e s { index } . d = d ;

19.2 Simulink - Stateflow Charts® as Input Files

As an alternative to .m files describing a MATLAB function as input file, it is
also possible to model a hybrid system graphically using Simulink Stateflow and
to use the generated file as input for the analysis. Figure 50 shows a Simulink
Stateflow model for a two tank system.

Figure 50: Simulink Stateflow model - two tank

To create a model, the user has to create a new Simulink model and add
a Stateflow chart to that model. Only the content of the Stateflow chart is
relevant and used as input file. The states of a Stateflow chart are considered to
be locations/modes of a hybrid automaton. We intentionally do not use State-
flow syntax in order to avoid the misinterpretation of our models with hybrid
automata semantics as real Stateflow models with possibly different semantics.
In other words, we use Stateflow only to create our own models with our own
syntax and semantics.

To define each location’s flow, the corresponding equations are written to
the location’s label. Each location of the hybrid system has to define a flow for
every variable of the system. If one of the equations contains a variable without

35

Figure 51: States are interpreted as locations

specifying a flow, this variable is considered to be a variable of the input set.
Furthermore, the naming and the type (input set or not) of the variables for all
locations, transitions and resets has to be consistent. Equations describing the
flow begin with the name of the variable whose flow shall be described, followed
by a "== and a linear term over all variables. The coefficients of the variables
in the linear term may only be followed by a variable name. The names of the
variables have to start with a letter and may contain numbers. The different
flow equations of one mode are separated using & as delimiter. To improve the
readability, spaces and line breaks can be used.

Transitions between the states can be added using drag and drop. Every
transition has to define a guard or to be a spontaneous transition. The two-
tank example given above only uses equality guards. These, for example, are
denoted by x2 == 1. Inequality guards are denoted accordingly with <= or >=.
Moreover, multiple guards can be used simultaneously at a single transition
being separated using & as delimiter. Figure 52 shows an example for the
combination of both guard types on one transition (underlined in red). After
the guard definitions a , has to follow even if no reset is used. Resets are also
allowed with spontaneous transitions. The transition on the figure will only be
taken if both guards are fulfilled.

The green underlined part of the labeling of the transition on figure 52 de-

36

Figure 52: Statflow model of a bouncing ball example

scribes the reset which is applied when the transition is taken. Because every
transition has a guard, the definition of the reset (if provided) follows the defi-
nition of the guard(s) with a comma as separator. The reset is defined similar
to the definition of the flow for a variable in a location. It starts with the name
of the variable to reset followed by := and a linear term over the flow variables
(without any multiplication signs between coefficients and variables). Multiple
linear terms are concatenated using & as delimiter. As before, space and line
breaks can be used to make the transition label better readable. To define spon-
taneous transitions, keywords are used. The use of the keyword fixpoint at a
transition label indicates that this transition is a spontaneous transition which
has to be taken if a fixpoint was detected. The user has to ensure, while using
the GUI, that the corresponding detection is enabled. To define a spontaneous
transition after a passed time, the keyword time followed by a constant defining
the time at which the transition has to be taken is used11.

The initial location is modelled using a transition starting from no location
but with the initial location as destination, as can be seen on figure 52. Con-
trary to the MATLAB function input file format, the graphical modelling does
not support the definition of initial sets, the input set U or any computation
parameters, as the local time horizon, the timestep size, etc. When using the
Simulink Stateflow file format, these values have to be provided using the GUI.

Invariants can be added to the model writing the invariant condition above
the flow equations in the locations. Multiple invariants are combined using the &
sign and a comma terminates the invariant definition. Figure 53 shows a model
which defines invariants for three of its four locations.

19.3 Tutorial

This section explains how to perform a complete reachability analysis using the
previously described tool. Firstly, a model has to be created. The easiest way
to create an input file is using Simulink Stateflow. By executing the MATLAB
command simulink, it is possible to create a new Simulink model. To create the
input file add a Stateflow element to the new Simulink model. Double-clicking

11please note that the denoted value relates to the total time passed and not to the time
passed in the location under consideration.

37

Figure 53: *.mdl model with invariants

on the Stateflow chart in the Simulink model opens the Stateflow view. In this
short tutorial, we will model and test a colliding-masses model, which consists
of only one state. Add the state to the Stateflow model using the red marked
button on figure 54.

To define the added states as the initial state of the model, use the green
marked button on figure 54. The transition can be added using drag and drop.
The label of the states defines the variables of the system and their flow in
this state. For further information on defining the flow, see section 19.2. The
transition’s labelling defines the transition guards and the reset of the variables
if the transition is taken. After completing the modelling, save the model file
to an arbitrary location as a .mdl file.

To analyze the created model start the reachability analysis tool. This can be
done by navigating to the correspondent directory in MATLAB and executing
the gui() function. Load the model to analyze using the Locate input file
button. Change the file type filter to *.mdl and locate the model file on your
hard drive. Next, we define the initial values for the calculation. As initial set,
we want to use a==0 & b==3 & c==2 & d==-1. Enter this string in the left
edit field in the category Initial values. The right edit field in this category
defines the initial values for the input set. Enter u==0 in this field to use a single
point 0 as input set. The category General options allows users to define the
number of transitions to consider (= Max. number of iterations-1), the time
horizon for the calculation in each location and the sampling time (timestep).
Assuming we want to analyze the reachable sets up to a horizon of 1 with a

38

Figure 54: Colliding masses stateflow model

sampling time of 0.01 taking at most one transition. To plot dimensions other
than the dimensions 1 and 2, change the values for the edit fields X-axis and
Y-axis in the category Plot options. At this point, the reachability analysis
can be started.

However, it is possible to speed up the computation by changing some param-
eters. By default, the Precluster and box option are already selected. To in-
crease the speed of calculating the intersection sets, ensure that fast intersection
is chosen for equality and inequality guards in the intersection section. To in-
crease the calculation speed choose mpt as optimization method and CDD
Criss-Cross as the algorithm. To use mpt, it has to be available on the
computing machine. The GUI allows for the initialization of mpt using the
Initialize additional tool button. Finally, choose Evaluation matrix as
type in the category Flowpipe construction and start the analysis. Figure
55 shows the result of the analysis.

39

Figure 55: Colliding masses plot with fast options

Figure 56: Colliding masses plot with fast options enlarged

40

Assuming a more accurate (and therefore time consuming) analysis shall be
done, choosing different options may help. For instance, disable the precluster
option in the category Clustering and chose Oct in the Directions category.
Use this time fminsearch as method to calculate intersections with equality
guards and fminbnd for inequality guards. A further change which could be
made is the optimization method which can be e.g. changed to linprog with
algorithm MediumScale. The use of these options causes the analysis to re-
quire much more time before a result is achieved. Figure 57 shows the output
result using the different options.

Figure 57: Colliding masses plot with slow (intended more accurate) options

19.4 Adding spontaneous transitions

For this part of the tutorial load the two-tank example as shown on figure 51.
The initial set for this example should be 1.5 <= x1 <= 2.5&x2 == 1. Assume
we want to trigger a spontaneous transition from the initial location (lower left)
to the location on the figures upper right.

To add this spontaneous transition to the two-tank model from 51, add a
corresponding transition with the label time 0.1 to the .mdl file. How this
should look is shown on figure 60.

To add this spontaneous transition to the .m file format add

1 t r a n s i t i o n s {8} . from = 3 ;
2 t r a n s i t i o n s {8} . to = 1 ;

41

Figure 58: Colliding masses plot with slow (intended more accurate) options
enlarged

Figure 59: original 2 tank example (left) and 2 tank with added spontaneous
transition (right)

3 t r a n s i t i o n s {8} . spontaneous = true ;
4 t r a n s i t i o n s {8} . t imee lapse = 0 . 1 ;

The resulting plot of the model with the spontaneous transition is expected

42

Figure 60: 2 tank example with additional time triggered transition

to be same as the result shown on figure 59’s plot on the right side.

References

[1] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang,
and Oded Maler. Spaceex: Scalable verification of hybrid systems. In
Shaz Qadeer Ganesh Gopalakrishnan, editor, Proc. 23rd International Con-
ference on Computer Aided Verification (CAV), LNCS. Springer, 2011.

[2] Colas Guernic and Antoine Girard. Reachability analysis of hybrid systems
using support functions. In Proceedings of the 21st International Conference
on Computer Aided Verification, CAV ’09, pages 540–554, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[3] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics. PhD thesis, Grenoble University, November 2009.

[4] Rajarshi Ray. Reachability Analysis of Hybrid Systems using Support Func-
tions. PhD thesis, Grenoble University, May 2012.

43

