

09.10.2014 http://embedded.rwth-aachen.de

Master Thesis
Symbolic Execution of Python Bytecode

Problem Statement
In software analysis, it is often helpful to know whether a certain program instruction is reachable (e.g., an error
location) and which conditions need to be fulfilled (e.g., an input variable must be in specific range). One possible
technique to analyze reachability is symbolic execution. The figure below shows a short function and simplified
depiction of the infinite execution tree. In the second line of the node labels information about the branching
conditions are stored as logical formulas.

In our research project, we develop a runtime verification framework with look-ahead capabilities for Python
programs. We analyze Python programs not directly, but the generated Python Bytecode which is an assembly-
like intermediate representation for Python programs. For the prediction of the program execution a symbolic
execution-based analysis is needed.

SIMPLE PYTHON PROGRAM AND INFINITE EXECUTION TREE

Your Tasks
In this thesis a symbolic execution method for Python Bytecode should be developed and is to be evaluated using
an industrial use case.

► Literature research on symbolic execution techniques for assembly-like languages
► Adaption and implementation of a promising approach which can handle pointer aliasing
► Evaluation on an industrial use case

Your Profile
The analysis should be implemented in Python and therefore intermediate language skills are preferred. Optional
is knowledge about formal methods and symbolic execution, but general understanding of program analysis is
helpful.

Contact
Thomas Henn, M. Sc. RWTH
henn@embedded.rwth-aachen.de

